
www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Learning the vi and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Other resources from O’Reilly

Related titles vi Editor Pocket Reference

Unix in a Nutshell

Classic Shell Scripting

The Productive Programmer

Unix Power Tools

Mac OS X for Unix Geeks

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly Media brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the inno-
vator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

www.it-ebooks.info

http://www.it-ebooks.info/


SEVENTH EDITION

Learning the vi and Vim Editors

Arnold Robbins, Elbert Hannah, and Linda Lamb

Tomcat ™

The Definitive Guide

Jason Brittain and Ian F. Darwin

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

main.title  Page iii  Monday, May 19, 2008  11:21 AM

www.it-ebooks.info

http://www.it-ebooks.info/


Learning the vi and Vim Editors, Seventh Edition
by Arnold Robbins, Elbert Hannah, and Linda Lamb

Copyright © 2008 Arnold Robbins, Elbert Hannah, and Linda Lamb. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com ). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sarah Schneider
Copyeditor: Genevieve d’Entremont
Proofreader: Sarah Schneider

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2008: Seventh Edition
November 1998: Sixth Edition
October 1990: Fifth Edition
June 1988: Fourth Edition
August 1987: Third Edition
April 1986: Second Edition
February 1986: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning the vi and Vim Editors, 7th Edition, the image of a tarsier, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52983-3

[M]

1215018617

www.it-ebooks.info

http://safari.oreilly.com
http://www.it-ebooks.info/


To my wife, Miriam, for your love, patience, and
support.

—Arnold Robbins, Sixth and Seventh Editions

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Part I. Basic and Advanced vi 

1. The vi Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
A Brief Historical Perspective 5
Opening and Closing Files 6
Quitting Without Saving Edits 10

2. Simple Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
vi Commands 13
Moving the Cursor 14
Simple Edits 18
More Ways to Insert Text 30
Joining Two Lines with J 31
Review of Basic vi Commands 32

3. Moving Around in a Hurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Movement by Screens 35
Movement by Text Blocks 38
Movement by Searches 39
Movement by Line Number 43
Review of vi Motion Commands 44

4. Beyond the Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
More Command Combinations 47
Options When Starting vi 48
Making Use of Buffers 51
Marking Your Place 52
Other Advanced Edits 53
Review of vi Buffer and Marking Commands 53

vii

www.it-ebooks.info

http://www.it-ebooks.info/


5. Introducing the ex Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
ex Commands 55
Editing with ex 58
Saving and Exiting Files 63
Copying a File into Another File 65
Editing Multiple Files 65

6. Global Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Confirming Substitutions 72
Context-Sensitive Replacement 73
Pattern-Matching Rules 74
Pattern-Matching Examples 81
A Final Look at Pattern Matching 89

7. Advanced Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Customizing vi 95
Executing Unix Commands 99
Saving Commands 103
Using ex Scripts 114
Editing Program Source Code 120

8. Introduction to the vi Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
And These Are My Brothers, Darrell, Darrell, and Darrell 125
Multiwindow Editing 126
GUI Interfaces 127
Extended Regular Expressions 128
Enhanced Tags 129
Improved Facilities 134
Programming Assistance 138
Editor Comparison Summary 140
Nothing Like the Original 141
A Look Ahead 141

Part II. Vim 

9. Vim (vi Improved): An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Overview 146
Where to Get Vim 150
Getting Vim for Unix and GNU/Linux 151
Getting Vim for Windows Environments 156
Getting Vim for the Macintosh Environment 157
Other Operating Systems 157

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/


Aids and Easy Modes for New Users 157
Summary 158

10. Major Vim Improvements over vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Built-in Help 159
Startup and Initialization Options 160
New Motion Commands 167
Extended Regular Expressions 169
Customizing the Executable 171

11. Multiple Windows in Vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Initiating Multiwindow Editing 174
Opening Windows 177
Moving Around Windows (Getting Your Cursor from Here to There) 180
Moving Windows Around 181
Resizing Windows 183
Buffers and Their Interaction with Windows 186
Playing Tag with Windows 190
Tabbed Editing 191
Closing and Quitting Windows 192
Summary 193

12. Vim Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195
What’s Your Favorite Color (Scheme)? 195
Dynamic File Type Configuration Through Scripting 205
Some Additional Thoughts About Vim Scripting 213
Resources 218

13. Graphical Vim (gvim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
General Introduction to gvim 220
Customizing Scrollbars, Menus, and Toolbars 225
gvim in Microsoft Windows 236
gvim in the X Window System 237
GUI Options and Command Synopsis 237

14. Vim Enhancements for Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
Folding and Outlining (Outline Mode) 240
Auto and Smart Indenting 251
Keyword and Dictionary Word Completion 259
Tag Stacking 268
Syntax Highlighting 270
Compiling and Checking Errors with Vim 279
Some Final Thoughts on Vim for Writing Programs 284

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/


15. Other Cool Stuff in Vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
Editing Binary Files 285
Digraphs: Non-ASCII Characters 287
Editing Files in Other Places 289
Navigating and Changing Directories 290
Backups with Vim 292
HTML Your Text 293
What’s the Difference? 294
Undoing Undos 296
Now, Where Was I? 297
What’s My Line (Size)? 300
Abbreviations of Vim Commands and Options 302
A Few Quickies (Not Necessarily Vim-Specific) 303
More Resources 304

Part III. Other vi Clones 

16. nvi: New vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
Author and History 307
Important Command-Line Arguments 308
Online Help and Other Documentation 309
Initialization 309
Multiwindow Editing 310
GUI Interfaces 311
Extended Regular Expressions 311
Improvements for Editing 312
Programming Assistance 315
Interesting Features 315
Sources and Supported Operating Systems 315

17. Elvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Author and History 317
Important Command-Line Arguments 317
Online Help and Other Documentation 319
Initialization 319
Multiwindow Editing 320
GUI Interfaces 323
Extended Regular Expressions 328
Improved Editing Facilities 328
Programming Assistance 332
Interesting Features 335
elvis Futures 340

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/


Sources and Supported Operating Systems 340

18. vile: vi Like Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343
Authors and History 343
Important Command-Line Arguments 344
Online Help and Other Documentation 345
Initialization 346
Multiwindow Editing 347
GUI Interfaces 349
Extended Regular Expressions 357
Improved Editing Facilities 359
Programming Assistance 365
Interesting Features 368
Sources and Supported Operating Systems 374

Part IV. Appendixes 

A. The vi, ex, and Vim Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377

B. Setting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  415

C. Problem Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

D. vi and the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  435

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447

Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Preface

Text editing is one of the most common tasks on any computer system, and vi is one
of the most useful standard text editors on a system. With vi you can create new files
or edit any existing text-only file.

vi, like many of the classic utilities developed during the early years of Unix, has a
reputation for being hard to navigate. Bram Moolenaar’s enhanced clone, Vim (“vi
Improved”), has gone a long way toward removing reasons for such impressions. Vim
includes countless conveniences, visual guides, and help screens. It has become prob-
ably the most popular version of vi, so this seventh edition of this book devotes seven
new chapters to it in Part II, Vim. However, many other worthy clones of vi also exist;
we cover three of them in Part III, Other vi Clones.

Scope of This Book
This book consists of 18 chapters and 4 appendixes, divided into 4 parts. Part I, Basic
and Advanced vi, is designed to get you started using vi quickly, and to follow up with
advanced skills that will let you use it effectively.

The first two chapters, Chapter 1, The vi Text Editor, and Chapter 2, Simple Editing,
present some simple vi commands with which you can get started. You should practice
these until they are second nature. You could stop reading at the end of Chapter 2,
having learned some elementary editing tools.

But vi is meant to do a lot more than rudimentary word processing; the variety of
commands and options enables you to shortcut a lot of editing drudgery. Chapter 3,
Moving Around in a Hurry, and Chapter 4, Beyond the Basics, concentrate on easier
ways to do tasks. During your first reading, you’ll get at least an idea of what vi can do
and what commands you might harness for your specific needs. Later, you can come
back to these chapters for further study.

Chapter 5, Introducing the ex Editor, Chapter 6, Global Replacement, and Chapter 7,
Advanced Editing, provide tools that help you shift more of the editing burden to the
computer. They introduce you to the ex line editor underlying vi, and they show you
how to issue ex commands from within vi.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8, Introduction to the vi Clones, provides an introduction to the extensions
available in the four vi clones covered in this book. It centralizes in one place the
descriptions of multiwindow editing, GUI interfaces, extended regular expressions,
facilities that make editing easier, and several other features, providing a roadmap to
what follows in the rest of this book. It also provides a pointer to source code for the
original vi, which can be compiled easily on modern Unix systems (including GNU/
Linux).

Part II, Vim, describes Vim, the most popular vi clone in the early part of the 21st
century.

Chapter 9, Vim (vi Improved): An Introduction, provides a general introduction to Vim,
including where to get binary versions for popular operating systems and some of the
different ways to use Vim.

Chapter 10, Major Vim Improvements over vi, describes the major improvements in
Vim over vi, such as built-in help, control over initialization, additional motion com-
mands, and extended regular expressions.

Chapter 11, Multiple Windows in Vim, focuses on multiwindow editing, which is per-
haps the most significant additional feature over standard vi. This chapter provides all
the details on creating and using multiple windows.

Chapter 12, Vim Scripts, looks into the Vim command language, which lets you write
scripts to customize and tailor Vim to suit your needs. Much of Vim’s ease of use “out
of the box” comes from the large number of scripts that other users have already written
and contributed to the Vim distribution.

Chapter 13, Graphical Vim (gvim), looks at Vim in modern GUI environments, such
as those that are now standard on commercial Unix systems, GNU/Linux and other
Unix work-alikes, and MS Windows.

Chapter 14, Vim Enhancements for Programmers, focuses on Vim’s use as a program-
mer’s editor, above and beyond its facilities for general text editing. Of particular value
are the folding and outlining facilities, smart indenting, syntax highlighting, and edit-
compile-debug cycle speedups.

Chapter 15, Other Cool Stuff in Vim, is a bit of a catch-all chapter, covering a number
of interesting points that don’t fit into the earlier chapters.

Part III, Other vi Clones, describes three other popular vi clones: nvi, elvis, and vile.

Chapter 16, nvi: New vi, Chapter 17, Elvis, and Chapter 18, vile: vi Like Emacs, cover
the various vi clones—nvi, elvis, and vile—showing you how to use their extensions
to vi and discussing the features that are specific to each one.

Part IV, Appendixes, provides useful reference material.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/


Appendix A, The vi, ex, and Vim Editors, lists all vi and ex commands, sorted by func-
tion. It also provides an alphabetical list of ex commands. Selected vi and ex commands
from Vim are also included.

Appendix B, Setting Options, lists set command options for vi and for all four clones.

Appendix C, Problem Checklists, consolidates checklists found earlier in the book.

Appendix D, vi and the Internet, describes vi’s place in the larger Unix and Internet
culture.

How the Material Is Presented
Our philosophy is to give you a good overview of what we feel are vi survival materials
for the new user. Learning a new editor, especially an editor with all the options of
vi, can seem like an overwhelming task. We have made an effort to present basic con-
cepts and commands in an easy-to-read and logical manner.

After providing the basics for vi, which are usable everywhere, we move on to cover
Vim in depth. We then round out our coverage of the vi landscape by looking at nvi,
elvis, and vile. The following sections describe the conventions used in this book.

Discussion of vi Commands
A picture of a keyboard button, like the one on the left, marks the main discussion
of that particular keyboard command or of related commands. You will find a

brief introduction to the main concept before it is broken down into task-oriented
sections. We then present the appropriate command to use in each case, along with a
description of the command and the proper syntax for using it.

Conventions
In syntax descriptions and examples, what you would actually type is shown in the
Courier font, as are all command names. Filenames are also shown in Courier, as are
program options. Variables (which you would not type literally, but would replace with
an actual value when you type the command) are shown in Courier italic. Brackets
indicate that a variable is optional. For example, in the syntax line:

vi [filename]

filename would be replaced by an actual filename. The brackets indicate that the vi
command can be invoked without specifying a filename at all. The brackets themselves
are not typed.

i

Preface | xv

www.it-ebooks.info

http://www.it-ebooks.info/


Certain examples show the effect of commands typed at the Unix shell prompt. In such
examples, what you actually type is shown in Courier Bold, to distinguish it from the
system response. For example:

$ ls
ch01.xml ch02.xml ch03.xml ch04.xml

In code examples, italic indicates a comment that is not to be typed. Otherwise, italic
introduces special terms and emphasizes anything that needs emphasis.

Following traditional Unix documentation convention, references of the form
printf(3) refer to the online manual (accessed via the man command). This example refers
to the entry for the printf( ) function in section 3 of the manual (you would type man
3 printf on most systems to see it).

Keystrokes
Special keystrokes are shown in a box. For example:

iWith a ESC

Throughout the book, you will also find columns of vi commands and their results:

Keystrokes Results

ZZ  "practice" [New file] 6 lines, 320 characters

 Give the write and save command, ZZ. Your file is saved as a regular Unix file.

In the preceding example, the command ZZ is shown in the left column. In the window
to the right is a line (or several lines) of the screen that show the result of the command.
Cursor position is shown in reverse video. In this instance, since ZZ saves and writes
the file, you see the status line shown when a file is written; the cursor position is not
shown. Below the window is an explanation of the command and its result.

Sometimes vi commands are issued by pressing the CTRL  key and another key si-
multaneously. In the text, this combination keystroke is usually written within a box
(for example, CTRL-G ). In code examples, it is written by preceding the name of the
key with a caret (^). For example, ^G means to hold down CTRL  while pressing the
G  key.

Problem Checklist
A problem checklist is included in those sections where you may run into some trouble.
You can skim these checklists and go back to them when you actually encounter a
problem. All of the problem checklists are also collected in Appendix C, for ease of
reference.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/


What You Need to Know Before Starting
This book assumes you have already read Learning the Unix Operating System
(O’Reilly), or some other introduction to Unix. You should already know how to:

• Log in and log out

• Enter Unix commands

• Change directories

• List files in a directory

• Create, copy, and remove files

Familiarity with grep (a global search program) and wildcard characters is also helpful.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

The web site for this book lists examples, errata, and plans for future editions. You can
access this page at:

http://www.oreilly.com/catalog/9780596529833

For more information about our books, conferences, software, resource centers, and
the O’Reilly Network, see our web site:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,

Preface | xvii

www.it-ebooks.info

http://www.oreilly.com/catalog/9780596529833
http://www.oreilly.com
http://www.it-ebooks.info/


and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

About the Previous Editions
In the fifth edition of this book (then called Learning the vi Editor), the ex editor com-
mands were first discussed more fully. In Chapters 5, 6, and 7, the complex features of
ex and vi were clarified by adding more examples, in topics such as regular expression
syntax, global replacement, .exrc files, word abbreviations, keyboard maps, and edit-
ing scripts. A few of the examples were drawn from articles in Unix World magazine.
Walter Zintz wrote a two-part tutorial* on vi that taught us a few things we didn’t
know, and that also had a lot of clever examples illustrating features we did already
cover in the book. Ray Swartz also had a helpful tip in one of his columns.† We are
grateful for the ideas in these articles.

The sixth edition of Learning the vi Editor introduced coverage of four freely available
“clones,” or work-alike editors. Many of them have improvements over the original
vi. One could thus say that there is a “family” of vi editors, and the book’s goal was
to teach you what you need to know to use them. That edition treated nvi, Vim,
elvis, and vile equally.

The sixth edition also added the following features:

• Many minor corrections and additions were made to the basic text.

• For each chapter where appropriate, a command summary was added at the end.

• New chapters covered each vi clone, the features and/or extensions common to
two or more of the clones, and multiwindow editing.

• The chapters for each vi clone described a bit of that program’s history and goals,
its unique features, and where to get it.

• A new appendix described vi’s place in the larger Unix and Internet culture.

Preface to the Seventh Edition
This seventh edition of Learning the vi and Vim Editors retains all the good features of
the sixth edition. Time has proven Vim to be the most popular vi clone, so this edition
adds considerably expanded coverage of that editor (and gives it a place in the title).
However, to be relevant for as many users as possible, we have retained and updated
the material on nvi, elvis, and vile.

* “vi Tips for Power Users,” Unix World, April 1990; and “Using vi to Automate Complex Edits,” Unix
World, May 1990. Both articles by Walter Zintz. (See Appendix D for the web location of these articles.)

† “Answers to Unix,” Unix World, August 1990.

xviii | Preface

www.it-ebooks.info

http://safari.oreilly.com
http://www.it-ebooks.info/


What’s New
The following features are new for this edition:

• Once again, we have corrected errors in the basic text.

• Seven new chapters provide exhaustive coverage of Vim.

• The material on nvi, elvis, and vile has been brought up-to-date.

• The previous edition’s two reference appendixes on ex and vi have been condensed
into one and now contain selected additional material on Vim.

• The other appendixes have been updated as well.

Versions
The following programs were used for testing out various vi features:

• The Solaris version of vi for a “reference” version of Unix vi

• Version 1.79 of Keith Bostic’s nvi

• Version 2.2 of Steve Kirkendall’s elvis

• Version 7.1 of Bram Moolenaar’s Vim

• Version 9.6 of vile, by Kevin Buettner, Tom Dickey, and Paul Fox

Acknowledgments from the Sixth Edition
First and foremost, thanks to my wife, Miriam, for taking care of the kids while I was
working on this book, particularly during the “witching hours” right before meal times.
I owe her large amounts of quiet time and ice cream.

Paul Manno, of the Georgia Tech College of Computing, provided invaluable help in
pacifying my printing software. Len Muellner and Erik Ray of O’Reilly & Associates
helped with the SGML software. Jerry Peek’s vi macros for SGML were invaluable.

Although all of the programs were used during the preparation of the new and revised
material, most of the editing was done with Vim versions 4.5 and 5.0 under GNU/Linux
(Red Hat 4.2).

Thanks to Keith Bostic, Steve Kirkendall, Bram Moolenaar, Paul Fox, Tom Dickey, and
Kevin Buettner, who reviewed the book. Steve Kirkendall, Bram Moolenaar, Paul Fox,
Tom Dickey, and Kevin Buettner also provided important parts of Chapters 8 through
12. (These chapter numbers refer to the sixth edition.)

Without the electricity being generated by the power company, doing anything with a
computer is impossible. But when the electricity is there, you don’t stop to think about
it. So too when writing a book—without an editor, nothing happens, but when the
editor is there doing her job, it’s easy to forget about her. Gigi Estabrook at O’Reilly is

Preface | xix

www.it-ebooks.info

http://www.it-ebooks.info/


a true gem. It’s been a pleasure working with her, and I appreciate everything she’s
done and continues to do for me.

Finally, many thanks to the production team at O’Reilly & Associates.

—Arnold Robbins
Ra’anana, ISRAEL
June 1998

Acknowledgments for the Seventh Edition
Once again, Arnold thanks his wife, Miriam, for her love and support. The size of his
quiet time and ice cream debt continues to grow. In addition, thanks to J.D. “Illiad”
Frazer for the great User Friendly cartoons.‡

Elbert would like to thank Anna, Cally, Bobby, and his parents for staying excited about
his work through the tough times. Their enthusiasm was contagious and appreciated.

Thanks to Keith Bostic and Steve Kirkendall for providing input on revising their edi-
tors’ chapters. Tom Dickey provided significant input for revising the chapter on
vile and the table of set options in Appendix B. Bram Moolenaar (the author of Vim)
reviewed the book this time around as well. Robert P.J. Day, Matt Frye, Judith Myerson,
and Stephen Figgins provided important review comments throughout the text.

Arnold and Elbert would both like to thank Andy Oram and Isabel Kunkle for their
work as editors, and all of the tools and production staff at O’Reilly Media.

—Arnold Robbins
Nof Ayalon, ISRAEL
2008

—Elbert Hannah
Kildeer, Illinois USA
2008

‡ See http://www.userfriendly.org if you’ve never heard of User Friendly.

xx | Preface

www.it-ebooks.info

http://www.userfriendly.org
http://www.it-ebooks.info/


PART I

Basic and Advanced vi

Part I is designed to get you started quickly with the vi editor and to provide the ad-
vanced skills that will let you use vi most effectively. These chapters cover the original,
core vi and provide commands you can use on any version; later chapters cover popular
clones. This part contains the following chapters:

• Chapter 1, The vi Text Editor

• Chapter 2, Simple Editing

• Chapter 3, Moving Around in a Hurry

• Chapter 4, Beyond the Basics

• Chapter 5, Introducing the ex Editor

• Chapter 6, Global Replacement

• Chapter 7, Advanced Editing

• Chapter 8, Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 1

The vi Text Editor

Unix* has a number of editors that can process the contents of text files, whether those
files contain data, source code, or sentences. There are line editors, such as ed and ex,
which display a line of the file on the screen; and there are screen editors, such as vi
and Emacs, which display a part of the file on your terminal screen. Text editors based
on the X Window System are also commonly available and are becoming increasing
popular. Both GNU Emacs and its derivative, XEmacs, provide multiple X windows;
two interesting alternatives are the sam and Acme editors from Bell Labs. Vim also
provides an X-based interface.

vi is the most useful standard text editor on your system. (vi is short for visual editor
and is pronounced “vee-eye.” This is illustrated graphically in Figure 1-1.) Unlike
Emacs, it is available in nearly identical form on every modern Unix system, thus pro-
viding a kind of text-editing lingua franca.† The same might be said of ed and ex, but
screen editors are generally much easier to use. (So much so, in fact, that line editors
have generally fallen into disuse.) With a screen editor, you can scroll the page, move
the cursor, delete lines, insert characters, and more, while seeing the results of your
edits as you make them. Screen editors are very popular, since they allow you to make
changes as you read through a file, like you would edit a printed copy, only faster.

To many beginners, vi looks unintuitive and cumbersome—instead of using special
control keys for word processing functions and just letting you type normally, it uses
all of the regular keyboard keys for issuing commands. When the keyboard keys are
issuing commands, vi is said to be in command mode. You must be in a special insert
mode before you can type actual text on the screen. In addition, there seem to be so
many commands.

* These days, the term “Unix” includes both commercial systems derived from the original Unix code base,
and Unix work-alikes whose source code is available. Solaris, AIX, and HP-UX are examples of the former,
and GNU/Linux and the various BSD-derived systems are examples of the latter. Unless otherwise noted,
everything in this book applies across the board to all those systems.

† GNU Emacs has become the universal version of Emacs. The only problem is that it doesn’t come standard
with most commercial Unix systems; you must retrieve and install it yourself.

3

www.it-ebooks.info

http://www.it-ebooks.info/


Once you start learning, however, you realize that vi is well designed. You need only
a few keystrokes to tell vi to do complex tasks. As you learn vi, you learn shortcuts
that transfer more and more of the editing work to the computer—where it belongs.

vi (like any text editor) is not a “what you see is what you get” word processor. If you
want to produce formatted documents, you must type in codes that are used by another
formatting program to control the appearance of the printed copy. If you want to indent
several paragraphs, for instance, you put a code where the indent begins and ends. 
Formatting codes allow you to experiment with or change the appearance of your
printed files, and, in many ways, they give you much more control over the appearance
of your documents than a word processor. Unix supports the troff formatting pack-
age.‡ The TEX and LATEX formatters are popular, commonly available alternatives.§

(vi does support some simple formatting mechanisms. For example, you can tell it to
automatically wrap when you come to the end of a line, or to automatically indent new
lines. In addition, Vim version 7 provides automatic spellchecking.)

As with any skill, the more editing you do, the easier the basics become, and the more
you can accomplish. Once you are used to all the powers you have while editing with
vi, you may never want to return to any “simpler” editor.

What are the components of editing? First, you want to insert text (a forgotten word
or a new or missing sentence), and you want to delete text (a stray character or an entire
paragraph). You also need to change letters and words (to correct misspellings or to
reflect a change of mind about a term). You might want to move text from one place

Figure 1-1. Correct pronunciation of vi

‡ troff is for laser printers and typesetters. Its “twin brother” is nroff, for line printers and terminals. Both
accept the same input language.  Following common Unix convention, we refer to both with the name
troff. Today, anyone using troff uses the GNU version, groff. See http://www.gnu.org/software/groff/ for
more information.

§ See http://www.ctan.org and http://www.latex-project.org for information on TEX and LATEX, respectively.

4 | Chapter 1: The vi Text Editor

www.it-ebooks.info

http://www.gnu.org/software/groff/
http://www.ctan.org
http://www.latex-project.org
http://www.it-ebooks.info/


to another part of your file. And, on occasion, you want to copy text to duplicate it in
another part of your file.

Unlike many word processors, vi’s command mode is the initial or “default” mode.
Complex, interactive edits can be performed with only a few keystrokes. (And to insert
raw text, you simply give any of the several “insert” commands and then type away.)

One or two characters are used for the basicIp commands. For example:

i
Insert

cw
Change word

Using letters as commands, you can edit a file with great speed. You don’t have to
memorize banks of function keys or stretch your fingers to reach awkward combina-
tions of keys. You never have to remove your hands from the keyboard, or mess around
with multiple levels of menus! Most of the commands can be remembered by the letters
that perform them, and nearly all commands follow similar patterns and are related to
each other.

In general, vi commands:

• Are case-sensitive (uppercase and lowercase keystrokes mean different things; I is
different from i).

• Are not shown (or “echoed”) on the screen when you type them.

• Do not require an ENTER  after the command.

There is also a group of commands that echo on the bottom line of the screen. Bottom-
line commands are preceded by different symbols. The slash (/) and the question mark
(?) begin search commands, and are discussed in Chapter 3. A colon (:) begins all ex
commands. ex commands are those used by the ex line editor. The ex editor is available
to you when you use vi, because ex is the underlying editor and vi is really just its
“visual” mode. ex commands and concepts are discussed fully in Chapter 5, but this
chapter introduces you to the ex commands to quit a file without saving edits.

A Brief Historical Perspective
Before diving into all the ins and outs of vi, it will help you to understand vi’s worldview
of your environment. In particular, this will help you make sense of many of vi’s oth-
erwise more obscure error messages, and also appreciate how the vi clones have evolved
beyond the original vi.

vi dates back to a time when computer users worked on terminals connected via serial
lines to central mini-computers. Hundreds of different kinds of terminals existed and
were in use worldwide. Each one did the same kind of actions (clear the screen, move
the cursor, etc.), but the commands needed to make them do these actions were

A Brief Historical Perspective | 5

www.it-ebooks.info

http://www.it-ebooks.info/


different. In addition, the Unix system let you choose the characters to use for back-
space, generating an interrupt signal, and other commands useful on serial terminals,
such as suspending and resuming output. These facilities were (and still are) managed
with the stty command.

The original UCB version of vi abstracted out the terminal control information from
the code (which was hard to change) into a text-file database of terminal capabilities
(which was easy to change), managed by the termcap library. In the early 1980s, Sys-
tem V introduced a binary terminal information database and terminfo library. The
two libraries were largely functionally equivalent. In order to tell vi which terminal you
had, you had to set the TERM environment variable. This was typically done in a shell
startup file, such as .profile or .login.

Today, everyone uses terminal emulators in a graphic environment (such as xterm). The
system almost always takes care of setting TERM for you. (You can use vi from a PC non-
GUI console too, of course. This is very useful when doing system recovery work in
single-user mode. There aren’t too many people left who would want to work this way
on a regular basis, though.) For day-to-day use, it is likely that you will want to use a
GUI version of vi, such as Vim or one of the other clones. On a Microsoft Windows
or Mac OS X system, this will probably be the default. However, when you run vi (or
some other screen editor of the same vintage) inside a terminal emulator, it still uses
TERM and termcap or terminfo and pays attention to the stty settings. And using it inside
a terminal emulator is just as easy a way to learn vi as any other.

Another important fact to understand about vi is that it was developed at a time when
Unix systems were considerably less stable than they are today. The vi user of yesteryear
had to be prepared for the system to crash at arbitrary times, and so vi included support
for recovering files that were in the middle of being edited when the system crashed.‖
So, as you learn vi and see the descriptions of various problems that might occur, bear
these historical developments in mind.

Opening and Closing Files
You can use vi to edit any text file. vi copies the file to be edited into a buffer (an area
temporarily set aside in memory), displays the buffer (though you can see only one
screenful at a time), and lets you add, delete, and change text. When you save your
edits, vi copies the edited buffer back into a permanent file, replacing the old file of the
same name. Remember that you are always working on a copy of your file in the buffer,
and that your edits will not affect your original file until you save the buffer. Saving
your edits is also called “writing the buffer,” or more commonly, “writing your file.”

‖ Thankfully, this kind of thing is much less common, although systems can still crash due to external
circumstances, such as a power outage.

6 | Chapter 1: The vi Text Editor

www.it-ebooks.info

http://www.it-ebooks.info/


Opening a File
vi is the Unix command that invokes the vi editor for an existing file or for
a brand new file. The syntax for the vi command is:

$ vi [filename]

The brackets shown on the above command line indicate that the filename is optional.
The brackets should not be typed. The $ is the Unix prompt. If the filename is omitted,
vi will open an unnamed buffer. You can assign the name when you write the buffer
into a file. For right now, though, let’s stick to naming the file on the command line.

A filename must be unique inside its directory. A filename can include any 8-bit char-
acter except a slash (/), which is reserved as the separator between files and directories
in a pathname, and ASCII NUL, the character with all zero bits. You can even include
spaces in a filename by typing a backslash (\) before the space. In practice, though,
filenames generally consist of any combination of uppercase and lowercase letters,
numbers, and the characters dot (.) and underscore (_). Remember that Unix is case-
sensitive: lowercase letters are distinct from uppercase letters. Also remember that you
must press ENTER  to tell Unix that you are finished issuing your command.

When you want to open a new file in a directory, give a new filename with the vi
command. For example, if you want to open a new file called practice in the current
directory, you would enter:

$ vi practice

Since this is a new file, the buffer is empty and the screen appears as follows:

~
~
~
"practice" [New file]

The tildes (~) down the lefthand column of the screen indicate that there is no text in
the file, not even blank lines. The prompt line (also called the status line) at the bottom
of the screen echoes the name and status of the file.

You can also edit any existing text file in a directory by specifying its filename. Suppose
that there is a Unix file with the pathname /home/john/letter. If you are already in
the /home/john directory, use the relative pathname. For example:

$ vi letter

brings a copy of the file letter to the screen.

If you are in another directory, give the full pathname to begin editing:

$ vi /home/john/letter

v i

Opening and Closing Files | 7

www.it-ebooks.info

http://www.it-ebooks.info/


Problems Opening Files
• When you invoke vi, the message [open mode] appears. 

Your terminal type is probably incorrectly identified. Quit the editing session im-
mediately by typing :q. Check the environment variable $TERM. It should be set to
the name of your terminal. Or ask your system administrator to provide an ade-
quate terminal type setting.

• You see one of the following messages:     

Visual needs addressable cursor or upline capability
Bad termcap entry
Termcap entry too long
terminal:  Unknown terminal type
Block device required
Not a typewriter

Your terminal type is either undefined, or there’s probably something wrong with
your terminfo or termcap entry. Enter :q to quit. Check your $TERM environment
variable, or ask your system administrator to select a terminal type for your
environment.

• A [new file] message appears when you think a file already exists. 

Check that you have used correct case in the filename (Unix filenames are case-
sensitive). If you have, then you are probably in the wrong directory. Enter :q to
quit. Then check to see that you are in the correct directory for that file (enter
pwd at the Unix prompt). If you are in the right directory, check the list of files in
the directory (with ls) to see whether the file exists under a slightly different name.

• You invoke vi, but you get a colon prompt (indicating that you’re in ex line-editing
mode).   

You probably typed an interrupt before vi could draw the screen. Enter vi by typing
vi at the ex prompt (:).

• One of the following messages appears:

[Read only]
File is read only
Permission denied

“Read only” means that you can only look at the file; you cannot save any changes
you make. You may have invoked vi in view mode (with view or vi -R), or you do
not have write permission for the file. See the section “Problems Saving Files” on
page 10.

• One of the following messages appears:

Bad file number
Block special file
Character special file
Directory
Executable

8 | Chapter 1: The vi Text Editor

www.it-ebooks.info

http://www.it-ebooks.info/


Non-ascii file
file non-ASCII

The file you’ve called up to edit is not a regular text file. Type :q! to quit, then
check the file you wish to edit, perhaps with the file command.

• When you type :q because of one of the previously mentioned difficulties, this message
appears: 

  No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q! to leave vi. Your changes
from this session will not be saved in the file.

Modus Operandi
As mentioned earlier, the concept of the current “mode” is fundamental to the way
vi works. There are two modes, command mode and insert mode. You start out in
command mode, where every keystroke represents a command. In insert mode, every-
thing you type becomes text in your file.

Sometimes, you can accidentally enter insert mode, or conversely, leave insert mode
accidentally. In either case, what you type will likely affect your files in ways you did
not intend.

Press the ESC  key to force vi to enter command mode. If you are already in command
mode, vi will beep at you when you press the ESC  key. (Command mode is thus
sometimes referred to as “beep mode.”)

Once you are safely in command mode, you can proceed to repair any accidental
changes, and then continue editing your text.

Saving and Quitting a File
You can quit working on a file at any time, save your edits, and return to the Unix
prompt. The vi command to quit and save edits is ZZ. Note that ZZ is capitalized.

Let’s assume that you do create a file called practice to practice vi commands, and
that you type in six lines of text. To save the file, first check that you are in command
mode by pressing ESC , and then enter ZZ.

Keystrokes Results

ZZ  "practice" [New file] 6 lines, 320 characters

 Give the write and save command, ZZ. Your file is saved as a regular Unix file.

ls  ch01         ch02         practice

 Listing the files in the directory shows the new file practice that you created.

Opening and Closing Files | 9

www.it-ebooks.info

http://www.it-ebooks.info/


You can also save your edits with ex commands. Type :w to save (write) your file but
not quit vi; type :q to quit if you haven’t made any edits; and type :wq to both save
your edits and quit. (:wq is equivalent to ZZ.) We’ll explain fully how to use ex com-
mands in Chapter 5; for now, you should just memorize a few commands for writing
and saving files.

Quitting Without Saving Edits
When you are first learning vi, especially if you are an intrepid experimenter, there are
two other ex commands that are handy for getting out of any mess that you might create.

What if you want to wipe out all of the edits you have made in a session and then return
to the original file? The command:

:e! ENTER

returns you to the last saved version of the file, so you can start over.

Suppose, however, that you want to wipe out your edits and then just quit vi? The
command:

:q! ENTER

quits the file you’re editing and returns you to the Unix prompt. With both of these
commands, you lose all edits made in the buffer since the last time you saved the file.
vi normally won’t let you throw away your edits. The exclamation point added to
the :e or :q command causes vi to override this prohibition, performing the operation
even though the buffer has been modified.

Problems Saving Files
• You try to write your file, but you get one of the following messages:   

File exists
File file exists - use w!
[Existing file]
File is read only

Type :w! file to overwrite the existing file, or type :w newfile to save the edited
version in a new file.

• You want to write a file, but you don’t have write permission for it. You get the message
“Permission denied.”  

Use :w newfile to write out the buffer into a new file. If you have write permission
for the directory, you can use mv to replace the original version with your copy of
it. If you don’t have write permission for the directory, type :w pathname/file to
write out the buffer to a directory in which you do have write permission (such as
your home directory, or /tmp).

10 | Chapter 1: The vi Text Editor

www.it-ebooks.info

http://www.it-ebooks.info/


• You try to write your file, but you get a message telling you that the file system is full.

Type :!rm junkfile to delete a (large) unneeded file and free some space. (Starting
an ex command with an exclamation point gives you access to Unix.)

Or type :!df to see whether there’s any space on another file system. If there is,
choose a directory on that file system and write your file to it with :w pathname.
(df is the Unix command to check a disk’s free space.)

• The system puts you into open mode and tells you that the file system is full.

The disk with vi’s temporary files is filled up. Type :!ls /tmp to see whether there
are any files you can remove to gain some disk space.# If there are, create a tem-
porary Unix shell from which you can remove files or issue other Unix commands. 
You can create a shell by typing :sh; type CTRL-D  or exit to terminate the shell
and return to vi. (On modern Unix systems, when using a job-control shell, you
can simply type CTRL-Z  to suspend vi and return to the Unix prompt; type fg to
return to vi.) Once you’ve freed up some space, write your file with :w!.

• You try to write your file, but you get a message telling you that your disk quota has
been reached. 

Try to force the system to save your buffer with the ex command :pre (short
for :preserve). If that doesn’t work, look for some files to remove. Use :sh (or
CTRL-Z  if you are using a job-control system) to move out of vi and remove files.
Use CTRL-D  (or fg) to return to vi when you’re done. Then write your file
with :w!.

Exercises
The only way to learn vi is to practice. You now know enough to create a new file and
to return to the Unix prompt. Create a file called practice, insert some text, and then
save and quit the file.

Open a file called practice in the current directory: vi practice

Insert text: i any text you like

Return to command mode: ESC

Quit vi, saving edits: ZZ

# Your vi may keep its temporary files in /usr/tmp, /var/tmp, or your current directory; you may need to poke
around a bit to figure out where exactly you’ve run out of room. Vim generally keeps its temporary file in the
same directory as the file being edited.

Quitting Without Saving Edits | 11

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 2

Simple Editing

This chapter introduces you to editing with vi, and it is set up to be read as a tutorial.
In it you will learn how to move the cursor and how to make some simple edits. If
you’ve never worked with vi, you should read the entire chapter.

Later chapters will show you how to expand your skills to perform faster and more
powerful edits. One of the biggest advantages for an adept user of vi is that there are
so many options to choose from. (One of the biggest disadvantages for a newcomer to
vi is that there are so many different editor commands.)

You can’t learn vi by memorizing every single vi command. Start out by learning the
basic commands introduced in this chapter. Note the patterns of use that the com-
mands have in common.

As you learn vi, be on the lookout for more tasks that you can delegate to the editor,
and then find the command that accomplishes it. In later chapters you will learn more
advanced features of vi, but before you can handle the advanced, you must master the
simple.

This chapter covers:

• Moving the cursor

• Adding and changing text

• Deleting, moving, and copying text

• More ways to enter insert mode

vi Commands
vi has two modes: command mode and insert mode. As soon as you enter a file, you
are in command mode, and the editor is waiting for you to enter a command. Com-
mands enable you to move anywhere in the file, to perform edits, or to enter insert
mode to add new text. Commands can also be given to exit the file (saving or ignoring
your edits) in order to return to the Unix prompt.

13

www.it-ebooks.info

http://www.it-ebooks.info/


You can think of the different modes as representing two different keyboards. In insert
mode, your keyboard functions like a typewriter. In command mode, each key has a
new meaning or initiates some instruction.

There are several ways to tell vi that you want to begin insert mode. One of the
most common is to press i. The i doesn’t appear on the screen, but after you press

it, whatever you type will appear on the screen and will be entered into the buffer. The
cursor marks the current insertion point.* To tell vi that you want to stop inserting text,
press ESC . Pressing ESC  moves the cursor back one space (so that it is on the last
character you typed) and returns vi to command mode.

For example, suppose you have opened a new file and want to insert the word “intro-
duction.” If you type the keystrokes iintroduction, what appears on the screen is:

introduction

When you open a new file, vi starts in command mode and interprets the first keystroke
(i) as the insert command. All keystrokes made after the insert command are considered
text until you press ESC . If you need to correct a mistake while in insert mode, back-
space and type over the error. Depending on the type of terminal you are using, back-
spacing may erase what you’ve previously typed or may just back up over it. In either
case, whatever you back up over will be deleted. Note that you can’t use the backspace
key to back up beyond the point where you entered insert mode. (If you have disabled
vi compatibility, Vim allows you to backspace beyond the point where you entered
insert mode.)

vi has an option that lets you define a right margin and provides a carriage return
automatically when you reach it. For right now, while you are inserting text, press
ENTER  to break the lines.

Sometimes you don’t know whether you are in insert mode or command mode. When-
ever vi does not respond as you expect, press ESC  once or twice to check which mode
you are in. When you hear the beep, you are in command mode.

Moving the Cursor
You may spend only a small amount of time in an editing session adding new text in
insert mode; much of the time you will be making edits to existing text.

In command mode you can position the cursor anywhere in the file. Since you begin
all basic edits (changing, deleting, and copying text) by placing the cursor at the text
that you want to change, you want to be able to move the cursor to that place as quickly
as possible.

I

* Some versions show that you’re in input mode in the status line.

14 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


There are vi commands to move the cursor:

• Up, down, left, or right—one character at a time

• Forward or backward by blocks of text such as words, sentences, or paragraphs

• Forward or backward through a file, one screen at a time

In Figure 2-1, an underscore marks the present cursor position. Circles show movement
of the cursor from its current position to the position that would result from various
vi commands.

O b 2k $

2wj2h

With a screen editor you can scroll the
page, move the cursor, delete lines,
and more, while seeing the results of
your edits as you make them.

Figure 2-1. Sample movement commands

Single Movements
The keys h, j, k, and l, right under your fingertips, will move the cursor:

h
Left, one space

j
Down, one line

k
Up, one line

l
Right, one space

You can also use the cursor arrow keys (← , ↓ , ↑ , → ), + and - to go up and down, or
the ENTER  and BACKSPACE  keys, but they are out of the way. At first, it may seem
awkward to use letter keys instead of arrows for cursor movement. After a short while,
though, you’ll find it is one of the things you’ll like best about vi—you can move around
without ever taking your fingers off the center of the keyboard.

Moving the Cursor | 15

www.it-ebooks.info

http://www.it-ebooks.info/


Before you move the cursor, press ESC  to make sure that you are in command mode.
Use h, j, k, and l to move forward or backward in the file from the current cursor
position. When you have gone as far as possible in one direction, you hear a beep and
the cursor stops. For example, once you’re at the beginning or end of a line, you cannot
use h or l to wrap around to the previous or next line; you have to use j or k.† Similarly,
you cannot move the cursor past a tilde (~) representing a line without text, nor can
you move the cursor above the first line of text.

Numeric Arguments
You can precede movement commands with numbers. Figure 2-2 shows how the com-
mand 4l moves the cursor four spaces to the right, just as if you had typed l four times
(llll).

With a screen editor you can scroll the

4l

Figure 2-2. Multiplying commands by numbers

The ability to multiply commands gives you more options and power for each com-
mand you learn. Keep this in mind as you are introduced to additional commands.

Movement Within a Line
When you saved the file practice, vi displayed a message telling you how many lines
are in that file. A line is not necessarily the same length as the visible line (often limited
to 80 characters) that appears on the screen. A line is any text entered between newlines.
(A newline character is inserted into the file when you press the ENTER  key in insert
mode.) If you type 200 characters before pressing ENTER , vi regards all 200 characters
as a single line (even though those 200 characters visibly take up several lines on the
screen).

As we mentioned in Chapter 1, vi has an option that allows you to set a distance from
the right margin at which vi will automatically insert a newline character. This option
is wrapmargin (its abbreviation is wm). You can set a wrapmargin at 10 characters:

:set wm=10

This command doesn’t affect lines that you’ve already typed. We’ll talk more about
setting options in Chapter 7. (This one really couldn’t wait!)

If you do not use vi’s automatic wrapmargin option, you should break lines with carriage
returns to keep the lines of manageable length.

† Vim, with nocompatible set, allows you to “space past” the end of the line to the next one with l or the space
bar.

16 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Two useful commands that involve movement within a line are:

0 (digit zero)
Move to beginning of line.

$
Move to end of line.

In the following example, line numbers are displayed. (Line numbers can be displayed
in vi by using the number option, which is enabled by typing :set nu in command mode.
This operation is described in Chapter 7.) 

  1  With a screen editor you can scroll the page,
  2  move the cursor, delete lines, insert characters,
     and more, while seeing the results of your edits
     as you make them.
  3  Screen editors are very popular.

The number of logical lines (3) does not correspond to the number of visible lines
(5) that you see on the screen. If the cursor were positioned on the d in the word

delete, and you entered $, the cursor would move to the period following the word
them. If you entered 0, the cursor would move back to the letter m in the word move,
at the beginning of line two.

Movement by Text Blocks
You can also move the cursor by blocks of text: words, sentences, paragraphs,
etc. The w command moves the cursor forward one word at a time, counting

symbols and punctuation as equivalent to words. The following line shows cursor
movement by w:

cursor, delete lines, insert characters,

You can also move by word, not counting symbols and punctuation, using the W com-
mand. (You can think of this as a “large” or “capital” Word.)

Cursor movement using W looks like this:

cursor, delete lines, insert characters,

To move backward by word, use the b command. Capital B allows you to move back-
ward by word, not counting punctuation.

As mentioned previously, movement commands take numeric arguments; so, with ei-
ther the w or b commands you can multiply the movement with numbers. 2w moves
forward two words; 5B moves back five words, not counting punctuation.

To move to a specific line, you can use the G command. Plain G goes to the end of the
file, 1G goes to the top of the file, and 42G goes to line 42. This is described in more detail
later in the section “The G (Go To) Command” on page 43.

0

$

w

Moving the Cursor | 17

www.it-ebooks.info

http://www.it-ebooks.info/


We’ll discuss movement by sentences and by paragraphs in Chapter 3. For now,
practice using the cursor movement commands that you know, combining them with
numeric multipliers.

Simple Edits
When you enter text in your file, it is rarely perfect. You find typos or want to improve
on a phrase; sometimes your program has a bug. Once you enter text, you have to be
able to change it, delete it, move it, or copy it. Figure 2-3 shows the kinds of edits you
might want to make to a file. The edits are indicated by proofreading marks.

In vi you can perform any of these edits with a few basic keystrokes: i for insert (which
you’ve already seen); a for append; c for change; and d for delete. To move or copy text,
you use pairs of commands. You move text with a d for “delete,” then a p for “put”;
you copy text with a y for “yank,” then a p for “put.” Each type of edit is described in
this section. Figure 2-4 shows the vi commands you use to make the edits marked in
Figure 2-3.

Inserting New Text
You have already seen the insert command used to enter text into a new file. You also
use the insert command while editing existing text to add missing characters, words,
and sentences. In the file practice, suppose you have the sentence:

 you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

With a editor you can scrooll the page,
move the cursor, delete lines, nisret
characters, and more, while results of
your edits as you make tham.
Since they allow you to make changes
as you read through a file, much as
you would edit a printed copy,
screen editors are very popular.

Figure 2-3. Proofreading edits

18 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


with the cursor positioned as shown. To insert With a screen editor at the beginning of
the sentence, enter the following:

Keystrokes Results

2k  you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Move the cursor up two lines with the k command, to the line where you want to
make the insertion.

iWith a  With a you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Press i to enter insert mode and begin inserting text.

screen editor
ESC

 With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Finish inserting text, and press ESC  to end the insert and return to command mode.

Appending Text
You can append text at any place in your file with the append command, a. This
works in almost the same way as i, except that text is inserted after the cursor

rather than before the cursor. You may have noticed that when you press i to enter
insert mode, the cursor doesn’t move until after you enter some text. By contrast, when
you press a to enter insert mode, the cursor moves one space to the right. When you
enter text, it appears after the original cursor position.

Changing Text
You can replace any text in your file with the change command, c. To tell c how

a

c

i screen x

cw
insert

re

r.
x

rS

dd

P
rs

i seeing theESC ESC

ESC

With a editor you can scrooll the page,
move the cursor, delete lines, nisret
characters, and more while results of
your edits as you make tham.
Since they allow you to make changes
as you read through a file, much as
you would edit a printed copy,
screen editors are very popular.

Figure 2-4. Edits with vi commands

Simple Edits | 19

www.it-ebooks.info

http://www.it-ebooks.info/


much text to change, you combine c with a movement command. In this way, a move-
ment command serves as a text object for the c command to affect. For example, c can
be used to change text from the cursor:

cw
To the end of a word

c2b
Back two words

c$
To the end of line

c0
To the beginning of line

After issuing a change command, you can replace the identified text with any amount
of new text, with no characters at all, with one word, or with hundreds of lines. c, like
i and a, leaves you in insert mode until you press the ESC  key.

When the change affects only the current line, vi marks the end of the text that will be
changed with a $, so that you can see what part of the line is affected. (See the example
for cw, next.)

Words

To change a word, combine the c (change) command with w for word. You
can replace a word (cw) with a longer or shorter word (or any amount of

text). cw can be thought of as “delete the word marked and insert new text until ESC
is pressed.”

Suppose you have the following line in your file practice:

With an editor you can scroll the page,

and want to change an to a screen. You need to change only one word:

Keystrokes Results

w  With an editor you can scroll the page,

Move with w to the place you want the edit to begin.

cw  With a$ editor you can scroll the page,

Give the change word command. The end of the text to be changed will be marked with a $
(dollar sign).

a screen  With a screen editor you can scroll the page,

Type in the replacement text, and then press ESC  to return to command mode.

cw also works on a portion of a word. For example, to change spelling to spelled, you
can position the cursor on the i, type cw, then type ed, and finish with ESC .

c w

20 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


General Form of vi Commands
In the change commands we’ve mentioned up to this point, you may have noticed the
following pattern: 

(command)(text object)

command is the change command c, and text object is a movement command (you don’t
type the parentheses). But c is not the only command that requires a text object. The
d command (delete) and the y command (yank) follow this pattern as well.

Remember also that movement commands take numeric arguments, so numbers can
be added to the text objects of c, d, and y commands. For example, d2w and 2dw are
commands to delete two words. With this in mind, you can see that most vi commands
follow a general pattern:

(command)(number)(text object)

or the equivalent form:

(number)(command)(text object)

Here’s how this works. number and command are optional. Without them, you simply
have a movement command. If you add a number, you have a multiple movement. On
the other hand, combine a command (c, d, or y) with a text object to get an editing
command.

When you realize how many combinations are possible in this way, vi becomes a
powerful editor indeed!

Lines

To replace the entire current line, use the special change command, cc. cc
changes an entire line, replacing that line with any amount of text entered

before pressing ESC . It doesn’t matter where the cursor is located on the line; cc re-
places the entire line of text.

A command like cw works differently from a command like cc. In using cw, the old text
remains until you type over it, and any old text that is left over (up to the $) goes away
when you press ESC . In using cc, though, the old text is wiped out first, leaving you a
blank line on which to insert text.

The “type over” approach happens with any change command that affects less than a
whole line, whereas the “blank line” approach happens with any change command that
affects one or more lines.

C replaces characters from the current cursor position to the end of the line. It has
the same effect as combining c with the special end-of-line indicator $ (c$).

c c

C

Simple Edits | 21

www.it-ebooks.info

http://www.it-ebooks.info/


The commands cc and C are really shortcuts for other commands, so they don’t follow
the general form of vi commands. You’ll see other shortcuts when we discuss the delete
and yank commands.

Characters

One other replacement edit is given by the r command. r replaces a single
character with another single character. You do not have to press ESC  to return

to command mode after making the edit. There is a misspelling in the line below:

 Pith a screen editor you can scroll the page,

Only one letter needs to be corrected. You don’t want to use cw in this instance because
you would have to retype the entire word. Use r to replace a single character at the
cursor:

Keystrokes Results

rW  With a screen editor you can scroll the page,

Give the replace command r, followed by the replacement character W.

Substituting text

Suppose you want to change just a few characters, and not a whole word. The
substitute command (s), by itself, replaces a single character. With a preceding

count, you can replace that many characters. As with the change command (c), the last
character of the text will be marked with a $ so that you can see how much text will be
changed.

The S command, as is usually the case with uppercase commands, lets you change
whole lines. In contrast to the C command, which changes the rest of the line from

the current cursor position, the S command deletes the entire line, no matter where the
cursor is. vi puts you in insert mode at the beginning of the line. A preceding count
replaces that many lines.

Both s and S put you in insert mode; when you are finished entering new text, press
ESC .

The R command, like its lowercase counterpart, replaces text. The difference is
that R simply enters overstrike mode. The characters you type replace what’s on

the screen, character by character, until you type ESC . You can overstrike a maximum
of only one line; as you type ENTER , vi will open a new line, effectively putting you
into insert mode.

r

s

S

R

22 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Changing Case
Changing the case of a letter is a special form of replacement. The tilde (~) com-
mand will change a lowercase letter to uppercase or an uppercase letter to low-

ercase. Position the cursor on the letter whose case you want to change, and type a ~.
The case of the letter will change, and the cursor will move to the next character.

In older versions of vi, you cannot specify a numeric prefix or text object for the ~ to
affect. Modern versions do allow a numeric prefix.

If you want to change the case of more than one line at a time, you must filter the text
through a Unix command such as tr, as described in Chapter 7.

Deleting Text
You can also delete any text in your file with the delete command, d. Like the
change command, the delete command requires a text object (the amount of text

to be operated on). You can delete by word (dw), by line (dd and D), or by other movement
commands that you will learn later.

With all deletions, you move to where you want the edit to take place, then give the
delete command (d) and the text object, such as w for word.

Words

Suppose you have the following text in the file:

 Screen editors are are very popular,
 since they allowed you to make
 changes as you read through a file.

with the cursor positioned as shown. You want to delete one are in the first line:

Keystrokes Results

2w  Screen editors are are very popular,
 since they allowed you to make
 changes as you read through a file.

Move the cursor to where you want the edit to begin (are).

dw  Screen editors are very popular,
 since they allowed you to make
 changes as you read through a file.

Give the delete word command (dw) to delete the word are.

dw deletes a word beginning where the cursor is positioned. Notice that the space fol-
lowing the word is deleted.

~

d

d w

Simple Edits | 23

www.it-ebooks.info

http://www.it-ebooks.info/


dw can also be used to delete a portion of a word. In this example:

 since they allowed you to make

you want to delete the ed from the end of allowed.

Keystrokes Results

dw  since they allowyou to make

Give the delete word command (dw) to delete the word, beginning with the position of the
cursor.

dw always deletes the space before the next word on a line, but we don’t want to do that
in this example. To retain the space between words, use de, which deletes only to the
end of a word. Typing dE deletes to the end of a word, including punctuation.

You can also delete backward (db) or to the end or beginning of a line (d$ or d0).

Lines

The dd command deletes the entire line that the cursor is on. dd will not
delete part of a line. Like its complement, cc, dd is a special command. Using

the same text as in the previous example, with the cursor positioned on the first line as
shown here:

 Screen editors are very popular,
 since they allow you to make
 changes as you read through a file.

you can delete the first two lines:

Keystrokes Results

2dd  changes as you read through a file.

Give the command to delete two lines (2dd). Note that even though the cursor was not posi-
tioned on the beginning of the line, the entire line is deleted.

The D command deletes from the cursor position to the end of the line. (D is a
shortcut for d$.) For example, with the cursor positioned as shown:

 Screen editors are very popular,
 since they allow you to make
 changes as you read through a file.

d d

D

24 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


you can delete the portion of the line to the right of the cursor:

Keystrokes Results

D  Screen editors are very popular,
 since they allow you to make
 changes 

Give the command to delete the portion of the line to the right of the cursor (D).

Characters

Often you want to delete only one or two characters. Just as r is a special change
command to replace a single character, x is a special delete command to delete a

single character. x deletes only the character the cursor is on. In the line here:

zYou can move text by deleting text and then

you can delete the letter z by pressing x.‡ A capital X deletes the character before the
cursor.  Prefix either of these commands with a number to delete that number of char-
acters. For example, 5x will delete the five characters under and to the right of the cursor.

Problems with deletions

• You’ve deleted the wrong text and you want to get it back.  

There are several ways to recover deleted text. If you’ve just deleted something and
you realize you want it back, simply type u to undo the last command (for example,
a dd). This works only if you haven’t given any further commands, since u undoes
only the most recent command. Alternatively, a U will restore the line to its pristine
state, the way it was before any changes were applied to it.

You can still recover a recent deletion, however, by using the p command, since
vi saves the last nine deletions in nine numbered deletion buffers. If you know, for
example, that the third deletion back is the one you want to restore, type:

"3p

to “put” the contents of buffer number 3 on the line below the cursor.

This works only for a deleted line. Words, or a portion of a line, are not saved in a
buffer. If you want to restore a deleted word or line fragment, and u won’t work,
use the p command by itself. This restores whatever you’ve last deleted. The next
few subsections will talk more about the commands u and p.

Note that Vim supports “infinite” undo, which makes life much easier. See the
section “Undoing Undos” on page 296 for more information.

x

‡ The mnemonic for x is that it is supposedly like “x-ing out” mistakes with a typewriter. Of course, who uses
a typewriter anymore?

Simple Edits | 25

www.it-ebooks.info

http://www.it-ebooks.info/


Moving Text
In vi, you move text by deleting it and then placing that deleted text elsewhere in the
file, like a “cut and paste.” Each time you delete a text block, that deletion is temporarily
saved in a special buffer. Move to another position in your file and use the put command
(p) to place that text in the new position. You can move any block of text, although
moving is more useful with lines than with words.

The put command (p) puts the text that is in the buffer after the cursor position.
The uppercase version of the command, P, puts the text before the cursor. If you

delete one or more lines, p puts the deleted text on a new line(s) below the cursor. If
you delete less than an entire line, p puts the deleted text into the current line, after the
cursor.

Suppose in your file practice you have the text:

 You can move text by deleting it and then,
 like a "cut and paste,"
 placing the deleted text elsewhere in the file.
 each time you delete a text block.

and you want to move the second line, like a “cut and paste,” below the third line. Using
delete, you can make this edit:

Keystrokes Results

dd  You can move text by deleting it and then,
 placing the deleted text elsewhere in the file.
 each time you delete a text block.

With the cursor on the second line, delete that line. The text is placed in a buffer (reserved
memory).

p  You can move text by deleting it and then,
 placing that deleted text elsewhere in the file.
 like a "cut and paste"
 each time you delete a text block.

Give the put command, p, to restore the deleted line at the next line below the cursor. To finish
reordering this sentence, you would also have to change the capitalization and punctuation
(with r) to match the new structure.

Once you delete text, you must restore it before the next change com-
mand or delete command. If you make another edit that affects the buf-
fer, your deleted text will be lost. You can repeat the put over and over,
so long as you don’t make a new edit. In Chapter 4, you will learn how
to save text you delete in a named buffer so that you can retrieve it later.

Transposing two letters

You can use xp (delete character and put after cursor) to transpose two letters. For
example, in the word mvoe, the letters vo are transposed (reversed). To correct a

p

26 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


transposition, place the cursor on v and press x, then p. By coincidence, the word
transpose helps you remember the sequence xp; x stands for trans, and p stands for pose.

There is no command to transpose words. The section “More Examples of Mapping
Keys” on page 107 discusses a short sequence of commands that transposes two words.

Copying Text
Often you can save editing time (and keystrokes) by copying a part of your file to
use in other places.  With the two commands y (for yank) and p (for put), you can

copy any amount of text and put that copied text in another place in the file. A yank
command copies the selected text into a special buffer, where it is held until another
yank (or deletion) occurs. You can then place this copy elsewhere in the file with the
put command.

As with change and delete, the yank command can be combined with any movement
command (yw, y$, 4yy). Yank is most frequently used with a line (or more) of text,
because to yank and put a word usually takes longer than simply to insert the word.

The shortcut yy operates on an entire line, just as dd and cc do. But the shortcut Y, for
some reason, does not operate the way D and C do. Instead of yanking from the current
position to the end of the line, Y yanks the whole line; that is, Y does the same thing as
yy.

Suppose you have in your file practice the text:

 With a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

You want to make three complete sentences, beginning each with With a screen editor
you can. Instead of moving through the file, making this edit over and over, you can
use a yank and put to copy the text to be added.

Keystrokes Results

yy  With a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

Yank the line of text that you want to copy into the buffer. The cursor can be anywhere on the
line you want to yank (or on the first line of a series of lines).

2j  With a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

Move the cursor to where you want to put the yanked text.

P  With a screen editor you can
 scroll the page.

y

Simple Edits | 27

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results
 With a screen editor you can
 move the cursor.
 delete lines.

Put the yanked text above the cursor line with P.

jp  With a screen editor you can
 scroll the page.
 With a screen editor you can
 move the cursor.
 With a screen editor you can
 delete lines.

Move the cursor down a line and put the yanked text below the cursor line with p.

Yanking uses the same buffer as deleting. Each new deletion or yank replaces the pre-
vious contents of the yank buffer. As we’ll see in Chapter 4, up to nine previous yanks
or deletions can be recalled with put commands. You can also yank or delete directly
into up to 26 named buffers, which allows you to juggle multiple text blocks at once.

Repeating or Undoing Your Last Command
Each edit command that you give is stored in a temporary buffer until you give the next
command. For example, if you insert the after a word in your file, the command used
to insert the text, along with the text that you entered, is temporarily saved.

Repeat

Any time you make the same editing command over and over, you can save time
by duplicating it with the repeat command, the period (.). Position the cursor

where you want to repeat the editing command, and type a period.

Suppose you have the following lines in your file:

 With a screen editor you can
 scroll the page.
 With a screen editor you can
 move the cursor.

You can delete one line, and then, to delete another line, simply type a period.

Keystrokes Results

dd  With a screen editor you can
 scroll the page.
 move the cursor.

Delete a line with the command dd.

.  With a screen editor you can
 scroll the page.

Repeat the deletion.

.

28 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Older versions of vi have problems repeating commands. For example, such versions
may have difficulty repeating a long insertion when wrapmargin is set. If you have such
a version, this bug will probably bite you sooner or later. There’s not a lot you can do
about it after the fact, but it helps to be forewarned. (Modern versions do not seem to
have this problem.) There are two ways you can guard against a potential problem
when repeating long insertions. You can write your file (:w) before repeating the inser-
tion (returning to this copy if the insertion doesn’t work correctly). You can also turn
off wrapmargin like this:

:set wm=0

In the later section “More Examples of Mapping Keys” on page 107, we’ll show you
an easy way to use the wrapmargin solution. In some versions of vi, the command CTRL-
@  repeats the most recent insertion. CTRL-@  is typed in insert mode and returns you
to command mode.

Undo

As mentioned earlier, you can undo your last command if you make an error.
Simply press u. The cursor need not be on the line where the original edit was

made.

To continue the previous example, showing deletion of lines in the file practice:

Keystrokes Results

u  With a screen editor you can
 scroll the page.
 move the cursor.

u undoes the last command and restores the deleted line.

U, the uppercase version of u, undoes all edits on a single line, as long as the cursor
remains on that line. Once you move off a line, you can no longer use U.

Note that you can undo your last undo with u, toggling between two versions of text.
u will also undo U, and U will undo any changes to a line, including those made with u.

A tip: the fact that u can undo itself leads to a nifty way to get around
in a file. If you ever want to get back to the site of your last edit, simply
undo it. You will pop back to the appropriate line. When you undo the
undo, you’ll stay on that line.

Vim lets you use CTRL-R  to “redo” an undone operation. Combined with infinite
undo, you can move backward and forward through the history of changes to your file.
See the section “Undoing Undos” on page 296 for more information.

u

Simple Edits | 29

www.it-ebooks.info

http://www.it-ebooks.info/


More Ways to Insert Text
You have inserted text before the cursor with the sequence:

itext to be inserted ESC

You’ve also inserted text after the cursor with the a command. Here are some other
insert commands for inserting text at different positions relative to the cursor:

A
Append text to end of current line.

I
Insert text at beginning of line.

o (lowercase letter “o”)
Open blank line below cursor for text.

O (uppercase letter “o”)
Open blank line above cursor for text.

s
Delete character at cursor and substitute text.

S
Delete line and substitute text.

R
Overstrike existing characters with new characters.

All of these commands place you in insert mode. After inserting text, remember to press
ESC  to return to command mode.

A (append) and I (insert) save you from having to move your cursor to the end or
beginning of the line before invoking insert mode. (The A command saves one keystroke
over $a. Although one keystroke might not seem like much of a saving, the more adept
—and impatient—an editor you become, the more keystrokes you will want to omit.)

o and O (open) save you from having to insert a carriage return. You can type these
commands from anywhere within the line.

s and S (substitute) allow you to delete a character or a whole line and replace the
deletion with any amount of new text. s is the equivalent of the two-stroke command
c SPACE , and S is the same as cc. One of the best uses for s is to change one character
to several characters.

R (“large” replace) is useful when you want to start changing text, but you don’t know
exactly how much. For example, instead of guessing whether to say 3cw or 4cw, just type
R and then enter your replacement text.

30 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Numeric Arguments for Insert Commands
Except for o and O, the insert commands just listed (plus i and a) take numeric prefixes.
With numeric prefixes, you might use the commands i, I, a, and A to insert a row of
underlines or alternating characters. For example, typing 50i* ESC  inserts 50 asterisks,
and typing 25a*- ESC  appends 50 characters (25 pairs of asterisk and hyphen). It’s
better to repeat only a small string of characters.§

With a numeric prefix, r replaces that number of characters with a repeated instance
of a single character. For example, in C or C++ code, to change || to &&, you would
place the cursor on the first pipe character and type 2r&.

You can use a numeric prefix with S to substitute several lines. It’s quicker and more
flexible, though, to use c with a movement command.

A good case for using the s command with a numeric prefix is when you want to change
a few characters in the middle of a word. Typing r wouldn’t be correct, and typing cw
would change too much text. Using s with a numeric prefix is usually the same as typing
R.  

There are other combinations of commands that work naturally together. For example,
ea is useful for appending new text to the end of a word. It helps to train yourself to
recognize such useful combinations so that they become automatic.

Joining Two Lines with J
Sometimes while editing a file you end up with a series of short lines that are
difficult to scan. When you want to merge two lines into one, position the cursor

anywhere on the first line, and press J to join the two lines.

Suppose your file practice reads:

 With a
 screen editor
 you can
 scroll the page, move the cursor

Keystrokes Results

J  With a screen editor
 you can
 scroll the page, move the cursor

J joins the line the cursor is on with the line below.

.  With a screen editor you can
 scroll the page, move the cursor

Repeat the last command (J) with the . to join the next line with the current line.

J

§ Very old versions of vi have difficulty repeating the insertion of more than one line’s worth of text.

Joining Two Lines with J | 31

www.it-ebooks.info

http://www.it-ebooks.info/


Using a numeric argument with J joins that number of consecutive lines. In the example
here, you could have joined three lines by using the command 3J.

Problem Checklist
• When you type commands, text jumps around on the screen and nothing works the

way it’s supposed to.

Make sure you’re not typing the J command when you mean j.

You may have hit the CAPS LOCK  key without noticing it. vi is case-sensitive;
that is, uppercase commands (I, A, J, etc.) are different from lowercase commands
(i, a, j), and if you hit this key, all your commands are interpreted not as lowercase
but as uppercase commands. Press the CAPS LOCK  key again to return to low-
ercase, press ESC  to ensure that you are in command mode, and then type either
U to restore the last line changed or u to undo the last command. You’ll probably
also have to do some additional editing to fully restore the garbled part of your file.

Review of Basic vi Commands
Table 2-1 presents a few of the commands you can perform by combining the
commands c, d, and y with various text objects. The last two rows show additional
commands for editing. Tables 2-2 and 2-3 list some other basic commands. Ta-
ble 2-4 summarizes the rest of the commands described in this chapter.   

Table 2-1. Edit commands

Text object Change Delete Copy

One word cw dw yw

Two words, not counting punctuation 2cW or c2W 2dW or d2W 2yW or y2W

Three words back 3cb or c3b 3db or d3b 3yb or y3b

One line cc dd yy or Y

To end of line c$ or C d$ or D y$

To beginning of line c0 d0 y0

Single character r x or X yl or yh

Five characters 5s 5x 5yl

Table 2-2. Movement

Movement Commands

← , ↓ , ↑ , → h, j, k, l

To first character of next line +

To first character of previous line -

To end of word e or E

Forward by word w or W

32 | Chapter 2: Simple Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Movement Commands

Backward by word b or B

To end of line $

To beginning of line 0

Table 2-3. Other operations

Operations Commands

Place text from buffer P or p

Start vi, open file if specified vi file

Save edits, quit file ZZ

No saving of edits, quit file :q!

Table 2-4. Text creation and manipulation commands

Editing action Command

Insert text at current position i

Insert text at beginning of line I

Append text at current position a

Append text at beginning of line A

Open new line below cursor for new text o

Open new line above cursor for new text O

Delete line and substitute text S

Overstrike existing characters with new text R

Join current and next line J

Toggle case ~

Repeat last action .

Undo last change u

Restore line to original state U

You can get by in vi using only the commands listed in these tables. However, in order
to harness the real power of vi (and increase your own productivity), you will need
more tools. The following chapters describe those tools.     

Review of Basic vi Commands | 33

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 3

Moving Around in a Hurry

You will not use vi just to create new files. You’ll spend a lot of your time in vi editing
existing files. You rarely want to simply open to the first line in the file and move through
it line by line; you want to get to a specific place in a file and start working.

All edits start with you moving the cursor to where you want to begin the edit (or, with
ex line editor commands, by identifying the line numbers to be edited). This chapter
shows you how to think about movement in a variety of ways (by screens, by text, by
patterns, or by line numbers). There are many ways to move in vi, since editing speed
depends on getting to your destination with only a few keystrokes.

This chapter covers:

• Movement by screens

• Movement by text blocks

• Movement by searches for patterns

• Movement by line number

Movement by Screens
When you read a book, you think of “places” in the book in terms of pages: the page
where you stopped reading or the page number in an index. You don’t have this con-
venience when you’re editing files. Some files take up only a few lines, and you can see
the whole file at once. But many files have hundreds (or thousands!) of lines.

You can think of a file as text on a long roll of paper. The screen is a window of (usually)
24 lines of text on that long roll.

In insert mode, as you fill up the screen with text, you will end up typing on the bottom
line of the screen. When you reach the end and press ENTER , the top line rolls out of
sight, and a blank line appears on the bottom of the screen for new text. This is called
scrolling.

35

www.it-ebooks.info

http://www.it-ebooks.info/


In command mode, you can move through a file to see any text in it by scrolling the
screen ahead or back. And, since cursor movements can be multiplied by numeric
prefixes, you can move quickly to anywhere in your file.

Scrolling the Screen
There are vi commands to scroll forward and backward through the file
by full and half screens:

^F
Scroll forward one screen.

^B
Scroll backward one screen.

^D
Scroll forward half screen (down).

^U
Scroll backward half screen (up).

(In this list of commands, the ^ symbol represents the CTRL  key. So ^F means to hold
down the CTRL  key and press the f  key simultaneously.)

There are also commands to scroll the screen up one line (^E) and down one line (^Y).
However, these two commands do not send the cursor to the beginning of the line. The
cursor remains at the same point in the line as when the command was issued.

Repositioning the Screen with z
If you want to scroll the screen up or down, but you want the cursor to remain
on the line where you left it, use the z command.

z ENTER
Move current line to top of screen and scroll.

z.
Move current line to center of screen and scroll.

z-
Move current line to bottom of screen and scroll.

With the z command, using a numeric prefix as a multiplier makes no sense. (After all,
you would need to reposition the cursor to the top of the screen only once. Repeating
the same z command wouldn’t move anything.) Instead, z understands a numeric prefix
as a line number that it will use in place of the current line. For example, z ENTER
moves the current line to the top of the screen, but 200z ENTER  moves line 200 to the
top of the screen.

CTRL F

z

36 | Chapter 3: Moving Around in a Hurry

www.it-ebooks.info

http://www.it-ebooks.info/


Redrawing the Screen
Sometimes while you’re editing, messages from your computer system
will display on your screen. These messages don’t become part of your

editing buffer, but they do interfere with your work. When system messages appear on
your screen, you need to redisplay, or redraw, the screen.

Whenever you scroll, you redraw part of (or all of) the screen, so you can always get
rid of unwanted messages by scrolling them off the screen and then returning to your
previous position. But you can also redraw the screen without scrolling, by typing 
CTRL-L .

Movement Within a Screen
You can also keep your current screen, or view of the file, and move around within
the screen using:

H
Move to home—the top line on screen.   

M
Move to middle line on screen.  

L
Move to last line on screen.  

nH
Move to n lines below top line.

nL
Move to n lines above last line.

H moves the cursor from anywhere on the screen to the first, or “home,” line. M moves
to the middle line, L to the last. To move to the line below the first line, use 2H.

Keystrokes Results

L  With a screen editor you can
 scroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changes
 as you read through a file.

Move to the last line of the screen with the L command.

2H  With a screen editor you can
 scroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changes
 as you read through a file.

CTRL L

H

Movement by Screens | 37

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results
Move to the second line of the screen with the 2H command. (H alone moves to the top line of
the screen.)

Movement by Line
Within the current screen there are also commands to move by line.  
You’ve already seen j and k. You can also use:

ENTER
Move to first character of next line.

+
Move to first character of next line.  

-
Move to first character of previous line.    

These three commands move down or up to the first character of the line, ignoring any
spaces or tabs. j and k, by contrast, move the cursor down or up to the first position
of a line, even if that position is blank (and assuming that the cursor started at the first
position).

Movement on the current line

Don’t forget that h and l move the cursor to the left and right, and that 0 (zero) and $
move the cursor to the beginning or end of the line. You can also use:

^
Move to first nonblank character of current line.  

n|
Move to column n of current line.  

As with the line movement commands shown earlier, ^ moves to the first character of
the line, ignoring any spaces or tabs. 0, by contrast, moves to the first position of the
line, even if that position is blank.

Movement by Text Blocks
Another way that you can think of moving through a vi file is by text blocks—
words, sentences, paragraphs, or sections.

You have already learned to move forward and backward by word (w, W, b or B). In
addition, you can use these commands:

e
Move to end of word.  

e

38 | Chapter 3: Moving Around in a Hurry

www.it-ebooks.info

http://www.it-ebooks.info/


E
Move to end of word (ignore punctuation). 

(
Move to beginning of current sentence.   

)
Move to beginning of next sentence.  

{
Move to beginning of current paragraph.    

}
Move to beginning of next paragraph.   

[[
Move to beginning of current section.   

]]
Move to beginning of next section.

To find the end of a sentence, vi looks for one of these punctuation marks: ?, ., or !.
vi locates the end of a sentence when the punctuation is followed by at least two spaces
or when it appears as the last nonblank character on a line. If you have left only a single
space following a period, or if the sentence ends with a quotation mark, vi won’t rec-
ognize the sentence.

A paragraph is defined as text up to the next blank line, or up to one of the default
paragraph macros (.IP, .PP, .LP, or .QP) from the troff MS macro package. Similarly,
a section is defined as text up to the next default section macro (.NH, .SH, .H 1,
or .HU). The macros that are recognized as paragraph or section separators can be cus-
tomized with the :set command, as described in Chapter 7.

Remember that you can combine numbers with movement. For example, 3) moves
ahead three sentences. Also remember that you can edit using movement commands:
d) deletes to the end of the current sentence, 2y} copies (yanks) two paragraphs ahead.

Movement by Searches
One of the most useful ways to move around quickly in a large file is by searching
for text, or more properly, a pattern of characters. Sometimes a search can be

performed to find a misspelled word or to find each occurrence of a variable in a
program.

The search command is the special character / (slash). When you enter a slash, it ap-
pears on the bottom line of the screen; you then type in the pattern that you want to
find: /pattern.

A pattern can be a whole word or any other sequence of characters (called a “character
string”). For example, if you search for the characters red, you will match red as a whole

/

Movement by Searches | 39

www.it-ebooks.info

http://www.it-ebooks.info/


word, but you’ll also match occurred. If you include a space before or after pattern, the
spaces will be treated as part of the word. As with all bottom-line commands, press
ENTER  to finish. vi, like all other Unix editors, has a special pattern-matching
language that allows you to look for variable text patterns: for example, any word
beginning with a capital letter, or the word The at the beginning of a line.

We’ll talk about this more powerful pattern-matching syntax in Chapter 6. For right
now, think of a pattern simply as a word or phrase.

vi begins the search at the cursor and searches forward, wrapping around to the start
of the file if necessary. The cursor will move to the first occurrence of the pattern. If
there is no match, the message “Pattern not found” will be shown on the status line.*

Using the file practice, here’s how to move the cursor by searches:

Keystrokes Results

/edits  With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Search for the pattern edits. Press ENTER  to enter. The cursor moves directly to that pattern.

/scr  With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Search for the pattern scr. Press ENTER  to enter. Note that there is no space after scr.

The search wraps around to the front of the file. Note that you can give any combination
of characters; a search does not have to be for a complete word.

To search backward, type a ? instead of a /:

?pattern

In both cases, the search wraps around to the beginning or end of the file, if necessary.

Repeating Searches
The last pattern that you searched for stays available throughout your editing
session. After a search, instead of repeating your original keystrokes, you can use

a command to search again for the last pattern:

n
Repeat search in same direction.

n

* The exact message varies with different vi clones, but their meanings are the same. In general, we won’t
bother noting everywhere that the text of a message may be different; in all cases the information conveyed
is the same.

40 | Chapter 3: Moving Around in a Hurry

www.it-ebooks.info

http://www.it-ebooks.info/


N
Repeat search in opposite direction.

/ ENTER
Repeat search forward.

? ENTER
Repeat search backward.

Since the last pattern stays available, you can search for a pattern, do some work, and
then search again for the same pattern without retyping it by using n, N, /, or ?. The
direction of your search (/ is forward, ? is backward) is displayed at the bottom left of
the screen. (nvi does not show the direction for the n and N commands. Vim puts the
search text into the command line too, and lets you scroll through a saved history of
search commands, using the up and down arrow keys.)

To continue with the previous example, since the pattern scr is still available for search,
you can do the following:

Keystrokes Results

n  With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Move to the next instance of the pattern scr (from screen to scroll) with the n (next) command.

?you  With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Search backward with ? from the cursor to the first occurrence of you. You need to press
ENTER  after typing the pattern.

N  With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Repeat the previous search for you but in the opposite direction (forward).

Sometimes you want to find a word only if it is further ahead; you don’t want the search
to wrap around earlier in the file. vi has an option, wrapscan, that controls whether
searches wrap. You can disable wrapping like this:

:set nowrapscan

When nowrapscan is set and a forward search fails, the status line displays the message:

Address search hit BOTTOM without matching pattern

When nowrapscan is set and a backward search fails, the message displays “TOP”
instead of “BOTTOM.”

Movement by Searches | 41

www.it-ebooks.info

http://www.it-ebooks.info/


Changing through searching

You can combine the / and ? search operators with the commands that change text,
such as c and d. Continuing with the previous example:

Keystrokes Results

d?move  With a screen editor you can scroll the
 page, your edits as you make them.

Delete from before the cursor up to and through the word move.

Note how the deletion occurs on a character basis, and whole lines are not deleted.

This section has given you only the barest introduction to searching for patterns.
Chapter 6, will teach you more about pattern matching and its use in making global
changes to a file.

Current Line Searches
There are also miniature versions of the search commands that operate within the
current line. The command fx moves the cursor to the next instance of the char-

acter x (where x stands for any character). The command tx moves the cursor to the
character before the next instance of x. Semicolons can then be used repeatedly to “find”
your way along.

The inline search commands are summarized here. None of these commands will move
the cursor to the next line:

fx
Find (move cursor to) next occurrence of x in the line, where x stands for any
character.

Fx
Find (move cursor to) previous occurrence of x in the line. 

tx
Find (move cursor to) character before next occurrence of x in the line.

Tx
Find (move cursor to) character after previous occurrence of x in the line. 

;
Repeat previous find command in same direction.   

,
Repeat previous find command in opposite direction.  

With any of these commands, a numeric prefix n locates the nth occurrence. Suppose
you are editing in practice, on this line:

 With a screen editor you can scroll the

f

42 | Chapter 3: Moving Around in a Hurry

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results

fo  With a screen editor you can scroll the

Find the first occurrence of o in your current line with f.

;  With a screen editor you can scroll the

Move to the next occurrence of o with the ; command (find next o).

dfx deletes up to and including the named character x. This command is useful in
deleting or yanking partial lines. You might need to use dfx instead of dw if there are
symbols or punctuation within the line that make counting words difficult. The t com-
mand works just like f, except that it positions the cursor before the character searched
for. For example, the command ct. could be used to change text up to the end of a
sentence, leaving the period.

Movement by Line Number
Lines in a file are numbered sequentially, and you can move through a file by specifying
line numbers.

Line numbers are useful for identifying the beginning and end of large blocks of text
you want to edit. Line numbers are also useful for programmers, since compiler error
messages refer to line numbers. Finally, line numbers are used by ex commands, which
you will learn in the next chapters.

If you are going to move by line numbers, you must have a way to identify them. Line
numbers can be displayed on  the screen using the :set nu option described in Chap-
ter 7. In vi, you can also display the current line number on the bottom of the screen.

The command CTRL-G  causes the following to be displayed at the bottom of your
screen: the current line number, the total number of lines in the file, and what per-
centage of the total the present line number represents. For example, for the file
practice, CTRL-G  might display:

"practice" line 3 of 6 --50%--

CTRL-G  is useful either for displaying the line number to use in a command or for
orienting yourself if you have been distracted from your editing session.

Depending upon the implementation of vi you’re using, you may see additional infor-
mation, such as what column the cursor is on, and an indication as to whether the file
has been modified but not yet written out. The exact format of the message will vary
as well.

The G (Go To) Command
You can use line numbers to move the cursor through a file. The G (go to) com-
mand uses a line number as a numeric argument and moves directly to that line.

G

Movement by Line Number | 43

www.it-ebooks.info

http://www.it-ebooks.info/


For instance, 44G moves the cursor to the beginning of line 44. G without a line number
moves the cursor to the last line of the file.

Typing two backquotes (``) returns you to your original position (the position where
you issued the last G command), unless you have done some edits in the meantime. If
you have made an edit and then moved the cursor using some command other than G,
`` will return the cursor to the site of your last edit. If you have issued a search command
(/ or ?), `` will return the cursor to its position when you started the search. A pair of
apostrophes ('') works much like two backquotes, except that it returns the cursor to
the beginning of the line instead of the exact position on that line where your cursor
had been.

The total number of lines shown with CTRL-G  can be used to give yourself a rough
idea of how many lines to move. If you are on line 10 of a 1,000-line file:

"practice" line 10 of 1000 --1%--

and you know that you want to begin editing near the end of that file, you could give
an approximation of your destination with 800G.

Movement by line number is a tool that can move you quickly from place to place
through a large file.

Review of vi Motion Commands
Table 3-1 summarizes the commands covered in this chapter.

Table 3-1. Movement commands

Movement Command

Scroll forward one screen ^F

Scroll backward one screen ^B

Scroll forward half screen ^D

Scroll backward half screen ^U

Scroll forward one line ^E

Scroll backward one line ^Y

Move current line to top of screen and scroll z  ENTER

Move current line to center of screen and scroll z.

Move current line to bottom of screen and scroll z-

Redraw the screen ^L

Move to home—the top line of screen H

Move to middle line of screen M

Move to bottom line of screen L

Move to first character of next line ENTER

Move to first character of next line +

44 | Chapter 3: Moving Around in a Hurry

www.it-ebooks.info

http://www.it-ebooks.info/


Movement Command

Move to first character of previous line -

Move to first nonblank character of current line ^

Move to column n of current line n|

Move to end of word e

Move to end of word (ignore punctuation) E

Move to beginning of current sentence (

Move to beginning of next sentence )

Move to beginning of current paragraph {

Move to beginning of next paragraph }

Move to beginning of current section [[

Move to beginning of next section ]]

Search forward for pattern /pattern

Search backward for pattern ?pattern

Repeat last search n

Repeat last search in opposite direction N

Repeat last search forward /

Repeat last search backward ?

Move to next occurrence of x in current line fx

Move to previous occurrence of x in current line Fx

Move to just before next occurrence of x in current line tx

Move to just after previous occurrence of x in current line Tx

Repeat previous find command in same direction ;

Repeat previous find command in opposite direction ,

Go to given line n nG

Go to end of file G

Return to previous mark or context ``

Return to beginning of line containing previous mark ''

Show current line (not a movement command) ^G

Review of vi Motion Commands | 45

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 4

Beyond the Basics

You have already been introduced to the basic vi editing commands, i, a, c, d, and y.
This chapter expands on what you already know about editing. It covers:

• Descriptions of additional editing facilities, with a review of the general command
form

• Additional ways to enter vi

• Making use of buffers that store yanks and deletions

• Marking your place in a file

More Command Combinations
In Chapter 2, you learned the edit commands c, d, and y, as well as how to combine
them with movements and numbers (such as 2cw or 4dd). In Chapter 3, you added many
more movement commands to your repertoire. Although the fact that you can combine
edit commands with movement is not a new concept to you, Table 4-1 gives you a feel
for the many editing options you now have.   

Table 4-1. More editing commands

Change Delete Copy From cursor to...

cH dH yH Top of screen

cL dL yL Bottom of screen

c+ d+ y+ Next line

c5| d5| y5| Column 5 of current line

2c) 2d) 2y) Second sentence following

c{ d{ y{ Previous paragraph

c/pattern d/pattern y/pattern Pattern

cn dn yn Next pattern

cG dG yG End of file

c13G d13G y13G Line number 13

47

www.it-ebooks.info

http://www.it-ebooks.info/


Notice how all of the sequences in Table 4-1 follow the general pattern:

(number)(command)(text object)

number is the optional numeric argument. command in this case is one of c, d, or y. text
object is a movement command.

The general form of a vi command is discussed in Chapter 2. You may wish to review
Tables 2-1 and 2-2 as well.

Options When Starting vi
So far, you have invoked the vi editor with the command:

$ vi file

There are other options to the vi command that can be helpful. You can open a file
directly to a specific line number or pattern. You can also open a file in read-only mode.
Another option recovers all changes to a file that you were editing when the system
crashed.

Advancing to a Specific Place
When you begin editing an existing file, you can call the file in and then move to the
first occurrence of a pattern or to a specific line number. You can also specify your first
movement by search or by line number right on the command line:*   

$ vi +n file
Opens file at line number n. 

$ vi + file
Opens file at last line. 

$ vi +/pattern file
Opens file at the first occurrence of pattern.    

In the file practice, to open the file and advance directly to the line containing the word
Screen, enter:

Keystrokes Results

vi +/Screen practice  With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters, while
 seeing the results of your edits as
 you make them.
 Screen editors are
 very popular, since they allow you
 to make changes as you read

* According to the POSIX standard, vi should use -c command  instead of +command as shown here. Typically,
for backward compatibility, both versions are accepted.

48 | Chapter 4: Beyond the Basics

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results
Give the vi command with the option +/ pattern to go directly to the line con-
taining Screen.

As you see in this example, your search pattern will not necessarily be positioned at the
top of the screen. If you include spaces in the pattern, you must enclose the whole
pattern within single or double quotes:†

+/"you make"

or escape the space with a backslash:

+/you\ make

In addition, if you want to use the general pattern-matching syntax described in Chap-
ter 6, you may need to protect one or more special characters from interpretation by
the shell with either single quotes or backslashes.

Using +/pattern is helpful if you have to leave an editing session before you’re finished.
You can mark your place by inserting a pattern such as ZZZ or HERE. Then, when you
return to the file, all you have to remember is /ZZZ or /HERE.

Normally, when you’re editing in vi, the wrapscan option is enabled. If
you’ve customized your environment so that wrapscan is always disabled
(see “Repeating Searches” on page 40), you might not be able to use
+/pattern. If you try to open a file this way, vi opens the file at the last
line and displays the message, “Address search hit BOTTOM without
matching pattern.”

Read-Only Mode
There will be times when you want to look at a file but want to protect that file from
inadvertent keystrokes and changes. (You might want to call in a lengthy file to practice
vi movements, or you might want to scroll through a command file or program.) You
can enter a file in read-only mode and use all the vi movement commands, but you
won’t be able to change the file.

To look at a file in read-only mode, enter either: 

$ vi -R file

or: 

$ view file

(The view command, like the vi command, can use any of the command-line options
for advancing to a specific place in the file.‡) If you do decide to make some edits to

† It is the shell that imposes the quoting requirement, not vi.

‡ Typically view is just a link to vi.

Options When Starting vi | 49

www.it-ebooks.info

http://www.it-ebooks.info/


the file, you can override read-only mode by adding an exclamation point to the
write command: 

:w!

or:

:wq

If you have a problem writing out the file, see the problem checklists summarized in
Appendix C.

Recovering a Buffer
Occasionally a system failure may happen while you are editing a file. Ordinarily, any
edits made after your last write (save) are lost.  However, there is an option, -r, which
lets you recover the edited buffer at the time of a system crash.

On a traditional Unix system with the original vi, when you first log on after the system
is running again, you will receive a mail message stating that your buffer has been saved.
In addition, if you type the command:

$ ex -r

or:

$ vi -r

you will get a list of any files that the system has saved.

Use the -r option with a filename to recover the edited buffer. For example, to recover
the edited buffer of the file practice after a system crash, enter:

$ vi -r practice

It is wise to recover the file immediately, lest you inadvertently make edits to the file
and then have to resolve a version skew between the preserved buffer and the newly
edited file.

You can force the system to preserve your buffer even when there is not a crash by using
the command :pre (short for :preserve). You may find it useful if you have made edits
to a file and then discover that you can’t save your edits because you don’t have write
permission. (You could also just write out a copy of the file under another name or into
a directory where you do have write permission. See “Problems Saving Files” on page
10.)

Recovery may work differently for the various clones and can change
from version to version. It is best to check your local documentation. 
vile does not support any kind of recovery. The vile documentation    
recommends the use of the autowrite and autosave options. How to do
this is described in “Customizing vi” on page 95.

50 | Chapter 4: Beyond the Basics

www.it-ebooks.info

http://www.it-ebooks.info/


Making Use of Buffers
You have seen that while you are editing, your last deletion (d or x) or yank (y) is saved
in a buffer (a place in stored memory). You can access the contents of that buffer and
put the saved text back in your file with the put command (p or P).

The last nine deletions are stored by vi in numbered buffers. You can access any of
these numbered buffers to restore any (or all) of the last nine deletions. (Small deletions,
of only parts of lines, are not saved in numbered buffers, however. These deletions can
be recovered only by using the p or P command immediately after you’ve made the
deletion.)

vi also allows you to place yanks (copied text) into buffers identified by letters. You
can fill up to 26 (a–z) buffers with yanked text and restore that text with a put command
at any time in your editing session.

Recovering Deletions
Being able to delete large blocks of text in a single bound is all very well and good, but
what if you mistakenly delete 53 lines that you need? You can recover any of your past
nine deletions, for they are saved in numbered buffers. The last delete is saved in buf-
fer 1, the second-to-last in buffer 2, and so on.

To recover a deletion, type " (double quote), identify the buffered text by number, then
give the put command. To recover your second-to-last deletion from buffer 2, type:

"2p

The deletion in buffer 2 is placed after the cursor.

If you’re not sure which buffer contains the deletion you want to restore, you don’t
have to keep typing "np over and over again.  If you use the repeat command (.) with
p after u, it automatically increments the buffer number. As a result, you can search
through the numbered buffers using:

"1pu.u.u etc.

to put the contents of each succeeding buffer in the file one after the other. Each time
you type u, the restored text is removed; when you type a dot (.), the contents of the
next buffer is restored to your file. Keep typing u and . until you’ve recovered the text
you’re looking for.

Yanking to Named Buffers
You have seen that you must put (p or P) the contents of the unnamed buffer before
you make any other edit, or the buffer will be overwritten. You can also use y and d
with a set of 26 named buffers (a–z) that are specifically available for copying and

Making Use of Buffers | 51

www.it-ebooks.info

http://www.it-ebooks.info/


moving text. If you name a buffer to store the yanked text, you can retrieve the contents
of the named buffer at any time during your editing session.

To yank into a named buffer, precede the yank command with a double quote (") and
the character for the name of the buffer you want to load. For example:

"dyy    Yank current line into buffer d.
"a7yy   Yank next seven lines into buffer a.

After loading the named buffers and moving to the new position, use p or P to put the
text back:

"dP     Put the contents of buffer d before cursor.
"ap     Put the contents of buffer a after cursor.

There is no way to put part of a buffer into the text—it is all or nothing.

In the next chapter, you’ll learn how to edit multiple files. Once you know how to travel
between files without leaving vi, you can use named buffers to selectively transfer text
between files. When using the multiple-window feature of the various clones, you can
also use the unnamed buffer to transfer data between files.

You can also delete text into named buffers using much the same procedure:

"a5dd   Delete five lines into buffer a.

If you specify a buffer name with a capital letter, your yanked or deleted text will be
appended to the current contents of that buffer. This allows you to be selective in what
you move or copy. For example:

"zd)
Delete from cursor to end of current sentence and save in buffer z.

2)
Move two sentences further on.

"Zy)
Add the next sentence to buffer z. You can continue adding more text to a named
buffer for as long as you like, but be warned: if you forget once, and yank or delete
to the buffer without specifying its name in capitalized form, you’ll overwrite the
buffer, losing whatever you had accumulated in it.

Marking Your Place
During a vi session, you can mark your place in the file with an invisible “bookmark,”
perform edits elsewhere, and then return to your marked place. In command mode:

mx
Marks the current position with x (x can be any letter). (The original vi allows only
lowercase letters. Vim distinguishes between uppercase and lowercase letters.) 

52 | Chapter 4: Beyond the Basics

www.it-ebooks.info

http://www.it-ebooks.info/


'x
(Apostrophe.) Moves the cursor to the first character of the line marked by x.  

`x
(Backquote.) Moves the cursor to the character marked by x.  

``
(Backquotes.) Returns to the exact position of the previous mark or context after
a move.  

''
(Apostrophes.) Returns to the beginning of the line of the previous mark or context.

Place markers are set only during the current vi session; they are not
stored in the file.

Other Advanced Edits
There are other advanced edits that you can execute with vi, but to use them you must
first learn a bit more about the ex editor by reading the next chapter.

Review of vi Buffer and Marking Commands
Table 4-2 summarizes the command-line options common to all versions of vi. Tables
4-3 and 4-4 summarize the buffer and marking commands.

Table 4-2. Command-line options

Option Meaning

+n file Open file at line number n.

+ file Open file at last line.

+/pattern file Open file at first occurrence of pattern (traditional version of POSIX -c).

-c command file Run command after opening file; usually a line number or search (POSIX version of +).

-R Operate in read-only mode (same as using view instead of vi).

-r Recover files after a crash.

Table 4-3. Buffer names

Buffer names Buffer use

1–9 The last nine deletions, from most to least recent.

a–z Named buffers for you to use as needed. Uppercase letters append to the buffer.

Other Advanced Edits | 53

www.it-ebooks.info

http://www.it-ebooks.info/


Table 4-4. Buffer and marking commands

Command Meaning

"b command Do command with buffer b.

mx Mark current position with x.

'x Move cursor to first character of line marked by x.

`x Move cursor to character marked by x.

`` Return to exact position of previous mark or context.

'' Return to beginning of the line of previous mark or context.

54 | Chapter 4: Beyond the Basics

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 5

Introducing the ex Editor

If this is a book on vi, why would we include a chapter on another editor? Well, ex is
not really another editor. vi is the visual mode of the more general, underlying line
editor, which is ex. Some ex commands can be useful to you while you are working in
vi, since they can save you a lot of editing time. Most of these commands can be used
without ever leaving vi.*

You already know how to think of files as a sequence of numbered lines. ex gives you
editing commands with greater mobility and scope. With ex, you can move easily be-
tween files and transfer text from one file to another in a variety of ways. You can quickly
edit blocks of text larger than a single screen. And with global replacement you can
make substitutions throughout a file for a given pattern.

This chapter introduces ex and its commands. You will learn how to:

• Move around a file by using line numbers

• Use ex commands to copy, move, and delete blocks of text

• Save files and parts of files

• Work with multiple files (reading in text or commands, traveling between files)

ex Commands
Long before vi or any other screen editor was invented, people communicated with
computers on printing terminals, rather than on today’s CRTs (or bitmapped screens
with pointing devices and terminal emulation programs). Line numbers were a way to
quickly identify a part of a file to be worked on, and line editors evolved to edit those
files. A programmer or other computer user would typically print out a line (or lines)
on the printing terminal, give the editing commands to change just that line, and then
reprint to check the edited line.

* vile is different from the other clones in that many of the more advanced ex commands simply don’t work.
Instead of noting each command here, we provide more details in Chapter 18.

55

www.it-ebooks.info

http://www.it-ebooks.info/


People don’t edit files on printing terminals anymore, but some ex line editor com-
mands are still useful to users of the more sophisticated visual editor built on top of
ex. Although it is simpler to make most edits with vi, the line orientation of ex gives it
an advantage when you want to make large-scale changes to more than one part of a file.

Many of the commands we’ll see in this chapter have filename argu-
ments. Although it’s possible, it is usually a very bad idea to have spaces
in your files’ names. ex will be confused to no end, and you will go to
more trouble than it’s worth trying to get the filenames to be accepted.
Use underscores, dashes, or periods to separate the components of your
filenames, and you’ll be much happier.

Before you start off simply memorizing ex commands (or worse, ignoring them), let’s
first take some of the mystery out of line editors. Seeing how ex works when it is invoked
directly will help make sense of the sometimes obscure command syntax.

Open a file that is familiar to you and try a few ex commands. Just as you can invoke
the vi editor on a file, you can invoke the ex line editor on a file. If you invoke ex, you
will see a message about the total number of lines in the file, and a colon command
prompt. For example:

$ ex practice
"practice" 6 lines, 320 characters
:

You won’t see any lines in the file unless you give an ex command that causes one or
more lines to be displayed.

ex commands consist of a line address (which can simply be a line number) plus a
command; they are finished with a carriage return (by hitting ENTER ). One of the
most basic commands is p for print (to the screen). So, for example, if you type 1p at
the prompt, you will see the first line of the file:

:1p
With a screen editor you can
:

In fact, you can leave off the p, because a line number by itself is equivalent to a print
command for that line. To print more than one line, you can specify a range of line
numbers (for example, 1,3—two numbers separated by a comma, with or without
spaces in between). For example:

:1,3
With a screen editor you can
scroll the page, move the cursor,
delete lines, insert characters, and more,

A command without a line number is assumed to affect the current line. So, for example,
the substitute command (s), which allows you to substitute one word for another, could
be entered like this:

56 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


:1
With a screen editor you can
:s/screen/line/
With a line editor you can

Notice that the changed line is reprinted after the command is issued. You could also
make the same change like this:

:1s/screen/line/
With a line editor you can

Even though you will be invoking ex commands from vi and will not be using them
directly, it is worthwhile to spend a few minutes in ex itself. You will get a feel for how
you need to tell the editor which line (or lines) to work on, as well as which command
to execute.

After you have given a few ex commands in your practice file, you should invoke vi
on that same file, so that you can see it in the more familiar visual mode. The com-
mand :vi will get you from ex to vi.

To invoke an ex command from vi, you must type the special bottom-line charac-
ter : (colon). Then type the command and press ENTER  to execute it. So, for example,
in the ex editor you move to a line simply by typing the number of the line at the colon
prompt. To move to line 6 of a file using this command from within vi, enter:

:6

Press ENTER .

After the following exercise, we will discuss ex commands only as they are executed
from vi.

Exercise: The ex Editor

At the Unix prompt, invoke the ex editor on a file called practice: ex practice

A message appears: "practice" 6 lines, 320 charac
ters

Go to and print (display) the first line: :1

Print (display) lines 1 through 3: :1,3

Substitute screen for line on line 1: :1s/screen/line

Invoke the vi editor on file: :vi

Go to the first line: :1

Problem Checklist
• While editing in vi, you accidentally end up in the ex editor.

A Q in the command mode of vi invokes ex. Any time you are in ex, the command
vi returns you to the vi editor.

ex Commands | 57

www.it-ebooks.info

http://www.it-ebooks.info/


Editing with ex
Many ex commands that perform normal editing operations have an equivalent in vi
that does the job more simply. Obviously, you will use dw or dd to delete a single word
or line rather than using the delete command in ex. However, when you want to make
changes that affect numerous lines, you will find the ex commands more useful. They
allow you to modify large blocks of text with a single command.

These ex commands are listed here, along with abbreviations for those commands.
Remember that in vi, each ex command must be preceded with a colon. You can use
the full command name or the abbreviation, whichever is easier to remember.           

Full name Abbreviation Meaning

delete d Delete lines

move m Move lines

copy co Copy lines

 t Copy lines (a synonym for co)

You can separate the different elements of an ex command with spaces, if you find the
command easier to read that way. For example, you can separate line addresses, pat-
terns, and commands in this way. You cannot, however, use a space as a separator
inside a pattern or at the end of a substitute command.

Line Addresses
For each ex editing command, you have to tell ex which line number(s) to edit. And for
the ex move and copy commands, you also need to tell ex where to move or copy the
text to.

You can specify line addresses in several ways:

• With explicit line numbers

• With symbols that help you specify line numbers relative to your current position
in the file

• With search patterns as addresses that identify the lines to be affected

Let’s look at some examples.

Defining a Range of Lines
You can use line numbers to explicitly define a line or range of lines. Addresses that
use explicit numbers are called absolute line addresses. For example:

:3,18d
Delete lines 3 through 18.

58 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


:160,224m23
Move lines 160 through 224 to follow line 23. (Like delete and put in vi.)

:23,29co100
Copy lines 23 through 29 and put after line 100. (Like yank and put in vi.)

To make editing with line numbers easier, you can also display all line numbers on the
left of the screen. The command:

:set number

or its abbreviation:

:set nu

displays line numbers. The file practice then appears:

1  With a screen editor
2  you can scroll the page,
3  move the cursor, delete lines,
4  insert characters and more

The displayed line numbers are not saved when you write a file, and they do not print
if you print the file. Line numbers are displayed either until you quit the vi session or
until you disable the set option:  

:set nonumber

or:

:set nonu

To temporarily display the line numbers for a set of lines, you can use the # sign. For
example:

:1,10#

would display the line numbers from line 1 to line 10.

As described in Chapter 3, you can also use the CTRL-G  command to display the
current line number. You can thus identify the line numbers corresponding to the start
and end of a block of text by moving to the start of the block, typing CTRL-G , and
then moving to the end of the block and typing CTRL-G  again.

Yet another way to identify line numbers is with the ex = command:

:=
Print the total number of lines.

:.=
Print the line number of the current line.

:/pattern/=
Print the line number of the first line that matches pattern.

Editing with ex | 59

www.it-ebooks.info

http://www.it-ebooks.info/


Line Addressing Symbols
You can also use symbols for line addresses. A dot (.) stands for the current line; and
$ stands for the last line of the file. % stands for every line in the file; it’s the same as the
combination 1,$. These symbols can also be combined with absolute line addresses.
For example:

:.,$d
Delete from current line to end of file.

:20,.m$
Move from line 20 through the current line to the end of the file.

:%d
Delete all the lines in a file.

:%t$
Copy all lines and place them at the end of the file (making a consecutive duplicate).

In addition to an absolute line address, you can specify an address relative to the current
line. The symbols + and - work like arithmetic operators. When placed before a number,
these symbols add or subtract the value that follows. For example:

:.,.+20d
Delete from current line through the next 20 lines.

:226,$m.-2
Move lines 226 through the end of the file to two lines above the current line.

:.,+20#
Display line numbers from the current line to 20 lines further on in the file.

In fact, you don’t need to type the dot (.) when you use + or - because the current line
is the assumed starting position.

Without a number following them, + and - are equivalent to +1 and –1, respec-
tively.† Similarly, ++ and -- each extend the range by an additional line, and so on. The
+ and - can also be used with search patterns, as shown in the next section.

The number 0 stands for the top of the file (imaginary line 0). 0 is equivalent to 1-, and
both allow you to move or copy lines to the very start of a file, before the first line of
existing text. For example:

:-,+t0
Copy three lines (the line above the cursor through the line below the cursor) and
put them at the top of the file.

† In a relative address, you shouldn’t separate the plus or minus symbol from the number that follows it. For
example, +10 means “10 lines following,” but + 10 means “11 lines following (1 + 10),” which is probably not
what you mean (or want).

60 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


Search Patterns
Another way that ex can address lines is by using search patterns. For example:

:/pattern/d
Delete the next line containing pattern.

:/pattern/+d
Delete the line below the next line containing pattern. (You could also use +1 instead
of + alone.)

:/pattern1/,/pattern2/d
Delete from the first line containing pattern1 through the first line containing
pattern2.

:.,/pattern/m23
Take the text from the current line (.) through the first line containing pattern and
put it after line 23.

Note that a pattern is delimited by a slash both before and after.

If you make deletions by pattern with vi and ex, there is a difference in the way the two
editors operate. Suppose your file practice contains the lines:

 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters and more, while seeing results
 of your edits as you make them.

Keystrokes Results

d/while  With a screen editor you can scroll the
 page, move the cursor, while seeing results
 of your edits as you make them.

The vi delete to pattern command deletes from the cursor up to the word while, but leaves
the remainder of both lines.

:.,/while/d  With a screen editor you can scroll the
 of your edits as you make them.

The ex command deletes the entire range of addressed lines, in this case both the current
line and the line containing the pattern. All lines are deleted in their entirety.

Redefining the Current Line Position
Sometimes, using a relative line address in a command can give you unexpected results.
For example, suppose the cursor is on line 1 and you want to print line 100 plus the
five lines below it. If you type:

:100,+5 p

Editing with ex | 61

www.it-ebooks.info

http://www.it-ebooks.info/


you’ll get an error message saying, “First address exceeds second.” The reason the
command fails is that the second address is calculated relative to the current cursor
position (line 1), so your command is really saying this:

:100,6 p

What you need is some way to tell the command to think of line 100 as the “current
line,” even though the cursor is on line 1.

ex provides such a way. When you use a semicolon instead of a comma, the first line
address is recalculated as the current line. For example, the command:

:100;+5 p

prints the desired lines. The +5 is now calculated relative to line 100. A semicolon is
useful with search patterns as well as absolute addresses. For example, to print the next
line containing pattern, plus the 10 lines that follow it, enter the command:

:/pattern/;+10 p

Global Searches
You already know how to use / (slash) in vi to search for patterns of characters in your
files. ex has a global command, g, that lets you search for a pattern and display all lines
containing the pattern when it finds them. The command :g! does the opposite of :g.
Use :g! (or its synonym, :v) to search for all lines that do not contain pattern.

You can use the global command on all lines in the file, or you can use line addresses
to limit a global search to specified lines or to a range of lines.

:g/pattern
Finds (moves to) the last occurrence of pattern in the file.

:g/pattern/p
Finds and displays all lines in the file containing pattern.

:g!/pattern/nu
Finds and displays all lines in the file that don’t contain pattern; also displays the
line number for each line found.

:60,124g/pattern/p
Finds and displays any lines between lines 60 and 124 containing pattern.

As you might expect, g can also be used for global replacements. We’ll talk about that
in Chapter 6.

Combining ex Commands
You don’t always need to type a colon to begin a new ex command. In ex, the vertical
bar (|) is a command separator, allowing you to combine multiple commands from the
same ex prompt (in much the same way that a semicolon separates multiple commands

62 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


at the Unix shell prompt). When you use the |, keep track of the line addresses you
specify. If one command affects the order of lines in the file, the next command does
its work using the new line positions. For example:

:1,3d | s/thier/their/
Delete lines 1 through 3 (leaving you now on the top line of the file), and then make
a substitution on the current line (which was line 4 before you invoked the ex
prompt).

:1,5 m 10 | g/pattern/nu
Move lines 1 through 5 after line 10, and then display all lines (with numbers)
containing pattern.

Note the use of spaces to make the commands easier to read.

Saving and Exiting Files
You have learned the vi command ZZ to quit and write (save) your file. But you will
frequently want to exit a file using ex commands, because these commands give you
greater control. We’ve already mentioned some of these commands in passing. Now
let’s take a more formal look:

:w
Writes (saves) the buffer to the file but does not exit. You can (and should)
use :w throughout your editing session to protect your edits against system failure
or a major editing error. 

:q
Quits the editor (and returns to the Unix prompt). 

:wq
Both writes the file and quits the editor. The write happens unconditionally, even
if the file was not changed.

:x
Both writes the file and quits (exits) the editor. The file is written only if it has been
modified.‡

vi protects existing files and your edits in the buffer. For example, if you want to write
your buffer to an existing file, vi gives you a warning. Likewise, if you have invoked
vi on a file, made edits, and want to quit without saving the edits, vi gives you an error
message such as: 

No write since last change.

‡ The difference between :wq and :x is important when editing source code and using make, which performs
actions based upon file modification times.

Saving and Exiting Files | 63

www.it-ebooks.info

http://www.it-ebooks.info/


These warnings can prevent costly mistakes, but sometimes you want to proceed with
the command anyway. An exclamation point (!) after your command overrides the
warning:    

:w!
:q!

:w! can also be used to save edits in a file that was opened in read-only mode with vi
-R or view (assuming you have write permission for the file).

:q! is an essential editing command that allows you to quit without affecting the original
file, regardless of any changes you made in this session. The contents of the buffer are
discarded.

Renaming the Buffer
You can also use :w to save the entire buffer (the copy of the file you are editing) under
a new filename.

Suppose you have a file practice, which contains 600 lines. You open the file and make
extensive edits. You want to quit but also save both the old version of practice and
your new edits for comparison. To save the edited buffer in a file called practice.new,
give the command:

:w practice.new

Your old version, in the file practice, remains unchanged (provided that you didn’t
previously use :w). You can now quit editing the new version by typing :q.

Saving Part of a File
While editing, you will sometimes want to save just part of your file as a separate, new
file. For example, you might have entered formatting codes and text that you want to
use as a header for several files.

You can combine ex line addressing with the write command, w, to save part of a file.
For example, if you are in the file practice and want to save part of practice as the file
newfile, you could enter:

:230,$w  newfile
Saves from line 230 to end of file in newfile.

:.,600w  newfile
Saves from the current line to line 600 in newfile.

Appending to a Saved File
You can use the Unix redirect and append operator (>>) with w to append all or part of
the contents of the buffer to an existing file. For example, if you entered:

64 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


:1,10w newfile

and then:

:340,$w >>newfile

newfile would contain lines 1–10 and from line 340 to the end of the buffer.

Copying a File into Another File
Sometimes you want to copy text or data already entered on the system into the file
you are editing. In vi, you can read in the contents of another file with the ex command:

:read filename

or its abbreviation:

:r filename

This command inserts the contents of filename starting on the line after the cursor
position in the file. If you want to specify a line other than the one the cursor’s on,
simply type the line number (or other line address) you want before the read or r
command.

Let’s suppose you are editing the file practice and want to read in a file called data
from another directory called /home/tim. Position the cursor one line above the line
where you want the new data inserted, and enter:

:r /home/tim/data

The entire contents of /home/tim/data are read into practice, beginning below the line
with the cursor.

To read in the same file and place it after line 185, you would enter:

:185r /home/tim/data

Here are other ways to read in a file:

:$r /home/tim/data
Place the read-in file at the end of the current file.

:0r /home/tim/data
Place the read-in file at the very beginning of the current file.

:/pattern/r /home/tim/data
Place the read-in file in the current file, after the line containing pattern.

Editing Multiple Files
ex commands enable you to switch between multiple files. The advantage of editing
multiple files is speed. If you are sharing the system with other users, it takes time to
exit and reenter vi for each file you want to edit. Staying in the same editing session

Copying a File into Another File | 65

www.it-ebooks.info

http://www.it-ebooks.info/


and traveling between files is not only faster for access, but you also save abbreviations
and command sequences that you have defined (see Chapter 7), and you keep yank
buffers so that you can copy text from one file to another.

Invoking vi on Multiple Files
When you first invoke vi, you can name more than one file to edit, and then use ex
commands to travel between the files. For example:

$ vi file1 file2

edits file1 first. After you have finished editing the first file, the ex command :w writes
(saves) file1 and :n calls in the next file (file2).  

Suppose you want to edit two files, practice and note:

Keystrokes Results

vi practice note  With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing

Open the two files practice and note. The first-named file, practice, appears on your
screen. Perform any edits.

:w  "practice" 6 lines, 328 characters

Save the edited file practice with the ex command w. Press ENTER .

:n  Dear Mr.
 Henshaw:
 Thank you for the prompt . . .

Call in the next file, note, with the ex command n. Press ENTER . Perform any edits.

:x  "note" 23 lines, 1343 characters

Save the second file, note, and quit the editing session.

Using the Argument List
ex actually lets you do more than just move to the next file in the argument list
with :n. The :args command (abbreviated :ar) lists the files named on the command
line, with the current file enclosed in brackets.

Keystrokes Results

vi practice note  With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing

Open the two files practice and note. The first-named file, practice, appears on your
screen.

:args  [practice] note

vi displays the argument list in the status line, with brackets around the current
filename.

66 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


The :rewind (:rew) command resets the current file to be the first file named on the
command line. elvis and Vim provide a corresponding :last command to move to the
last file on the command line.

Calling in New Files
You don’t have to call in multiple files at the beginning of your editing session. You
can switch to another file at any time with the ex command :e. If you want to edit
another file within vi, you first need to save your current file (:w), then give the
command:

:e filename

Suppose you are editing the file practice and want to edit the file letter, and then
return to practice:

Keystrokes Results

:w  "practice" 6 lines, 328 characters

Save practice with w and press ENTER . practice is saved and remains on the screen. You
can now switch to another file, because your edits are saved.

:e letter  "letter" 23 lines, 1344 characters

Call in the file letter with e and press ENTER . Perform any edits.

vi “remembers” two filenames at a time as the current and alternate filenames. These
can be referred to by the symbols % (current filename) and # (alternate filename). # is
particularly useful with :e, since it allows you to switch easily back and forth between
two files. In the example just given, you could return to the first file, practice, by typing
the command :e #. You could also read the file practice into the current file by
typing :r #.

If you have not first saved the current file, vi will not allow you to switch files
with :e or :n unless you tell it imperatively to do so by adding an exclamation point
after the command.

For example, if after making some edits to letter, you wanted to discard the edits and
return to practice, you could type :e! #. 

The following command is also useful. It discards your edits and returns to the last
saved version of the current file:

:e!

In contrast to the # symbol, % is useful mainly when writing out the contents of the
current buffer to a new file. For example, in the earlier section “Renaming the Buffer”
on page 64, we showed you how to save a second version of the file practice with the
command:

:w practice.new

Editing Multiple Files | 67

www.it-ebooks.info

http://www.it-ebooks.info/


Since % stands for the current filename, that line could also have been typed:

:w %.new

Switching Files from vi
Since switching back to the previous file is something that you will tend
to do a lot, you don’t have to move to the ex command line to do it. The

vi command ^^ (the Ctrl key with the caret key) will do this for you. Using this com-
mand is the same as typing :e #. As with the :e command, if the current buffer has not
been saved, vi will not let you switch back to the previous file.

Edits Between Files
When you give a yank buffer a one-letter name, you have a convenient way to move
text from one file to another. Named buffers are not cleared when a new file is loaded
into the vi buffer with the :e command. Thus, by yanking or deleting text from one
file (into multiple named buffers if necessary), calling in a new file with :e, and putting
the named buffer(s) into the new file, you can transfer material between files.

The following example illustrates how to transfer text from one file to another:   

Keystrokes Results

"f4yy  With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them

Yank four lines into buffer f.

:w  "practice" 6 lines, 238 characters

Save the file.

:e letter  Dear Mr.
 Henshaw:
 I thought that you would
 be interested to know that:
 Yours truly,

Enter the file letter with :e. Move the cursor to where the copied text will be placed.

"fp  Dear Mr.
 Henshaw:
 I thought that you would
 be interested to know that:
 With a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yours truly,

Place yanked text from named buffer f below the cursor.

CTRL ^

68 | Chapter 5: Introducing the ex Editor

www.it-ebooks.info

http://www.it-ebooks.info/


Another way to move text from one file to another is to use the ex commands :ya (yank)
and :pu (put). These commands work the same way as the equivalent vi commands
y and p, but they are used with ex’s line-addressing capability and named buffers.

For example:

:160,224ya  a

would yank (copy) lines 160 through 224 into buffer a. Next you would move
with :e to the file where you want to put these lines. Place the cursor on the line where
you want to put the yanked lines. Then type:

:pu a

to put the contents of buffer a after the current line.

Editing Multiple Files | 69

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 6

Global Replacement

Sometimes, halfway through a document or at the end of a draft, you may recognize
inconsistencies in the way that you refer to certain things. Or, in a manual, some prod-
uct whose name appears throughout your file is suddenly renamed (marketing!). Often
enough it happens that you have to go back and change what you’ve already written,
and you need to make the changes in several places.

The way to make these changes is with a powerful change command called global
replacement. With one command you can automatically replace a word (or a string of
characters) wherever it occurs in the file.

In a global replacement, the ex editor checks each line of a file for a given pattern of
characters. On all lines where the pattern is found, ex replaces the pattern with a new
string of characters. For right now, we’ll treat the search pattern as if it were a simple
string; later in the chapter we’ll look at the powerful pattern-matching language known
as regular expressions.

Global replacement really uses two ex commands: :g (global) and :s (substitute). Since
the syntax of global replacement commands can get fairly complex, let’s look at it in
stages.

The substitute command has the syntax:

:s/old/new/

This changes the first occurrence of the pattern old to new on the current line. The /
(slash) is the delimiter between the various parts of the command. (The slash is optional
when it is the last character on the line.)

A substitute command with the syntax:

:s/old/new/g

changes every occurrence of old to new on the current line, not just the first occur-
rence. The :s command allows options following the substitution string. The g option
in the syntax above stands for global. (The g option affects each pattern on a line; don’t
confuse it with the :g command, which affects each line of a file.)

71

www.it-ebooks.info

http://www.it-ebooks.info/


By prefixing the :s command with addresses, you can extend its range to more than
one line. For example, this command will change every occurrence of old to new from
line 50 to line 100:

:50,100s/old/new/g

This command will change every occurrence of old to new within the entire file:

:1,$s/old/new/g

You can also use % instead of 1,$ to specify every line in a file. Thus, the last command
could also be given like this:

:%s/old/new/g

Global replacement is much faster than finding each instance of a string and replacing
it individually. Because the command can be used to make many different kinds of
changes, and because it is so powerful, we will first illustrate simple replacements and
then build up to complex, context-sensitive replacements.

Confirming Substitutions
It makes sense to be overly careful when using a search and replace command. It some-
times happens that what you get is not what you expect. You can undo any search and
replacement command by entering u, provided that the command was the most recent
edit you made. But you don’t always catch undesired changes until it is too late to undo
them. Another way to protect your edited file is to save the file with :w before performing
a global replacement. Then at least you can quit the file without saving your edits and
can go back to where you were before the change was made. You can also read the
previous version of the buffer back in with :e!.

It’s wise to be cautious and know exactly what is going to be changed in your file. If
you’d like to see what the search turns up and confirm each replacement before it is
made, add the c option (for confirm) at the end of the substitute command:

:1,30s/his/the/gc

ex will display the entire line where the string has been located, and the string will be
marked by a series of carets (^^^^):

copyists at his school
            ^^^ 

If you want to make the replacement, you must enter y (for yes) and press ENTER . If
you don’t want to make a change, simply press ENTER .

this can be used for invitations, signs, and menus.
 ^^^ 

The combination of the vi commands n (repeat last search) and dot (.) (repeat last
command) is also an extraordinarily useful and quick way to page through a file and
make repetitive changes that you may not want to make globally. So, for example, if

72 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


your editor has told you that you’re using which when you should be using that, you
can spot-check every occurrence of which, changing only those that are incorrect:

/which Search for which

cwthat ESC Change to that

n Repeat search

n Repeat search, skip a change

. Repeat change (if appropriate)

 (Etc.)

Context-Sensitive Replacement
The simplest global replacements substitute one word (or a phrase) for another. If you
have typed a file with several misspellings (editer for editor), you can do the global
replacement:

:%s/editer/editor/g

This substitutes editor for every occurrence of editer throughout the file.

There is a second, slightly more complex syntax for global replacement. This syntax
lets you search for a pattern, and then, once you find the line with the pattern, make a
substitution on a string different from the pattern. You can think of this as context-
sensitive replacement.

The syntax is as follows:

:g/pattern/s/old/new/g

The first g tells the command to operate on all lines of a file. pattern identifies the lines
on which a substitution is to take place. On those lines containing pattern, ex is to
substitute (s) for old the characters in new. The last g indicates that the substitution is
to occur globally on that line.

For example, as we write this book, the XML directives <keycap> and </keycap> place
a box around ESC  to show the Escape key. You want ESC  to be all in caps, but you
don’t want to change any instances of Escape that might be in the text. To change
instances of Esc to ESC only when Esc is on a line that contains the <keycap> directive,
you could enter:

:g/<keycap>/s/Esc/ESC/g

If the pattern being used to find the line is the same as the one you want to change, you
don’t have to repeat it. The command:

:g/string/s//new/g

would search for lines containing string and substitute for that same string.

Context-Sensitive Replacement | 73

www.it-ebooks.info

http://www.it-ebooks.info/


Note that:

:g/editer/s//editor/g

has the same effect as:

:%s/editer/editor/g

You can save some typing by using the second form. It is also possible to combine
the :g command with :d, :mo, :co, and other ex commands besides :s. As we’ll show,
you can thus make global deletions, moves, and copies.

Pattern-Matching Rules
In making global replacements, Unix editors such as vi allow you to search not just for
fixed strings of characters, but also for variable patterns of words, referred to as regular
expressions.

When you specify a literal string of characters, the search might turn up other occur-
rences that you didn’t want to match. The problem with searching for words in a file
is that a word can be used in different ways. Regular expressions help you conduct a
search for words in context. Note that regular expressions can be used with the vi
search commands / and ?, as well as in the ex commands :g and :s.

For the most part, the same regular expressions work with other Unix programs, such
as grep, sed, and awk.*

Regular expressions are made up by combining normal characters with a number of
special characters called metacharacters.† The metacharacters and their uses are listed
next.

Metacharacters Used in Search Patterns
. (period, dot)

Matches any single character except a newline. Remember that spaces are treated
as characters. For example, p.p matches character strings such as pep, pip, and pcp.

*
Matches zero or more (as many as there are) of the single character that immediately
precedes it. For example, bugs* will match bugs (one s) or bug (no s). (It will also
match bugss, bugsss, and so on.)

* Much more information on regular expressions can be found in the two O’Reilly books sed & awk, by Dale
Dougherty and Arnold Robbins, and Mastering Regular Expressions, by Jeffrey E.F. Friedl.

† Technically speaking, we should probably call these metasequences, since sometimes two characters together
have special meaning, and not just single characters. Nevertheless, the term metacharacters is in common
use in Unix literature, so we follow that convention here.

74 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


The * can follow a metacharacter. For example, since . (dot) means any charac-
ter, .* means “match any number of any character.”

Here’s a specific example of this: the command :s/End.*/End/ removes all char-
acters after End (it replaces the remainder of the line with nothing).

^
When used at the start of a regular expression, requires that the following regular
expression be found at the beginning of the line. For example, ^Part matches
Part when it occurs at the beginning of a line, and ^... matches the first three
characters of a line. When not at the beginning of a regular expression, ^ stands
for itself.

$
When used at the end of a regular expression, requires that the preceding regular
expression be found at the end of the line; for example, here:$ matches only when
here: occurs at the end of a line. When not at the end of a regular expression, $
stands for itself.

\
Treats the following special character as an ordinary character. For example, \.
matches an actual period instead of “any single character,” and \* matches an
actual asterisk instead of “any number of a character.” The \ (backslash) prevents
the interpretation of a special character. This prevention is called “escaping the
character.” (Use \\ to get a literal backslash.)

[ ]
Matches any one of the characters enclosed between the brackets. For example,
[AB] matches either A or B, and p[aeiou]t matches pat, pet, pit, pot, or put. A range
of consecutive characters can be specified by separating the first and last characters
in the range with a hyphen. For example, [A-Z] will match any uppercase letter
from A to Z, and [0-9] will match any digit from 0 to 9.

You can include more than one range inside brackets, and you can specify a mix
of ranges and separate characters. For example, [:;A-Za-z( )] will match four dif-
ferent punctuation marks, plus all letters.

When regular expressions and vi were first developed, they were
meant to work only with the ASCII character set. In today’s global
market, modern systems support locales, which provide different
interpretations of the characters that lie between a and z. To get
accurate results, you should use POSIX bracket expressions (dis-
cussed shortly) in your regular expressions, and avoid ranges of the
form a-z.

Most metacharacters lose their special meaning inside brackets, so you don’t need
to escape them if you want to use them as ordinary characters. Within brackets,
the three metacharacters you still need to escape are \ - ]. The hyphen (-) acquires

Pattern-Matching Rules | 75

www.it-ebooks.info

http://www.it-ebooks.info/


meaning as a range specifier; to use an actual hyphen, you can also place it as the
first character inside the brackets.

A caret (^) has special meaning only when it is the first character inside the brackets,
but in this case the meaning differs from that of the normal ^ metacharacter. As
the first character within brackets, a ^ reverses their sense: the brackets will match
any one character not in the list. For example, [^0-9] matches any character that
is not a digit.

\( \)
Saves the pattern enclosed between \( and \) into a special holding space, or a
“hold buffer.” Up to nine patterns can be saved in this way on a single line. For
example, the pattern:

\(That\) or \(this\)

saves That in hold buffer number 1 and saves this in hold buffer number 2. The
patterns held can be “replayed” in substitutions by the sequences \1 to \9. For
example, to rephrase That or this to read this or That, you could enter:

:%s/\(That\) or \(this\)/\2 or \1/

You can also use the \n notation within a search or substitute string. For example:

:s/\(abcd\)\1/alphabet-soup/

changes abcdabcd into alphabet-soup.‡

\< \>
Matches characters at the beginning (\<) or at the end (\>) of a word. The end or
beginning of a word is determined either by a punctuation mark or by a space. For
example, the expression \<ac will match only words that begin with ac, such as
action. The expression ac\> will match only words that end with ac, such as ma-
niac. Neither expression will match react. Note that unlike \(...\), these do not
have to be used in matched pairs.

~
Matches whatever regular expression was used in the last search. For example, if
you searched for The, you could search for Then with /~n. Note that you can use
this pattern only in a regular search (with /).§ It won’t work as the pattern in a
substitute command. It does, however, have a similar meaning in the replacement
portion of a substitute command.

All of the clones support optional, extended regular expression syntaxes. See the section
“Extended Regular Expressions” on page 128 for more information.

‡ This works with vi, nvi, and Vim, but not with elvis or vile.

§ This is a rather flaky feature of the original vi. After using it, the saved search pattern is set to the new text
typed after the ~, not the combined new pattern, as one might expect. Also, none of the clones behave this
way. So, while this feature exists, it has little to recommend its use.

76 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


POSIX Bracket Expressions
We have just described the use of brackets for matching any one of the enclosed char-
acters, such as [a-z]. The POSIX standard introduced additional facilities for matching
characters that are not in the English alphabet. For example, the French è is an alpha-
betic character, but the typical character class [a-z] would not match it. Additionally,
the standard provides for sequences of characters that should be treated as a single unit
when matching and collating (sorting) string data.

POSIX also formalizes the terminology. Groups of characters within brackets are called
“bracket expressions” in the POSIX standard. Within bracket expressions, beside literal
characters such as a, !, and so on, you can have additional components. These compo-
nents are:

Character classes
A POSIX character class consists of keywords bracketed by [: and :]. The key-
words describe different classes of characters, such as alphabetic characters, con-
trol characters, and so on (see Table 6-1).

Collating symbols
A collating symbol is a multicharacter sequence that should be treated as a unit. It
consists of the characters bracketed by [. and .].

Equivalence classes
An equivalence class lists a set of characters that should be considered equivalent,
such as e and è. It consists of a named element from the locale, bracketed by [=
and =].

All three of these constructs must appear inside the square brackets of a bracket ex-
pression. For example, [[:alpha:]!] matches any single alphabetic character or the
exclamation point, [[.ch.]] matches the collating element ch, but does not match just
the letter c or the letter h. In a French locale, [[=e=]] might match any of e, è, or é.
Classes and matching characters are shown in Table 6-1.

Table 6-1. POSIX character classes

Class Matching characters

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Space and tab characters

[:cntrl:] Control characters

[:digit:] Numeric characters

[:graph:] Printable and visible (nonspace) characters

[:lower:] Lowercase characters

[:print:] Printable characters (includes whitespace)

[:punct:] Punctuation characters

[:space:] Whitespace characters

Pattern-Matching Rules | 77

www.it-ebooks.info

http://www.it-ebooks.info/


Class Matching characters

[:upper:] Uppercase characters

[:xdigit:] Hexadecimal digits

vi on HP-UX 9.x (and newer) systems support POSIX bracket expressions, as
does /usr/xpg4/bin/vi on Solaris (but not /usr/bin/vi). This facility is also available
in nvi, elvis, Vim, and vile. Current GNU/Linux systems, in particular, are sensitive
to the locale chosen at installation time, and you can expect to get reasonable results,
particularly when trying to match only lowercase or uppercase letters, just by using the
POSIX bracket expressions. 

Metacharacters Used in Replacement Strings
When you make global replacements, the regular expression metacharacters discussed
earlier carry their special meanings only within the search portion (the first part) of the
command.

For example, when you type this:

:%s/1\.  Start/2.  Next, start with $100/

note that the replacement string treats the characters . and $ literally, without your
having to escape them. By the same token, let’s say you enter:

:%s/[ABC]/[abc]/g

If you’re hoping to replace A with a, B with b, and C with c, you’ll be surprised. Since
brackets behave like ordinary characters in a replacement string, this command will
change every occurrence of A, B, or C to the five-character string [abc].

To solve problems like this, you need a way to specify variable replacement strings.
Fortunately, there are additional metacharacters that have special meaning in a re-
placement string.

\n
Is replaced with the text matched by the nth pattern previously saved by \( and
\), where n is a number from 1 to 9, and previously saved patterns (kept in hold
buffers) are counted from the left on the line. See the explanation for \( and \) in
the earlier section “Metacharacters Used in Search Patterns” on page 74.

\
Treats the following special character as an ordinary character. Backslashes are
metacharacters in replacement strings as well as in search patterns. To specify a
real backslash, type two in a row (\\).

&
Is replaced with the entire text matched by the search pattern when used in a
replacement string. This is useful when you want to avoid retyping text:

78 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


:%s/Yazstremski/&, Carl/

The replacement will say Yazstremski, Carl. The & can also replace a variable pat-
tern (as specified by a regular expression). For example, to surround each line from
1 to 10 with parentheses, type:

:1,10s/.*/(&)/

The search pattern matches the whole line, and the & “replays” the line, included
within your text.

~
Has a similar meaning as when it is used in a search pattern: the string found is
replaced with the replacement text specified in the last substitute command. This
is useful for repeating an edit. For example, you could say :s/thier/their/ on one
line and repeat the change on another with :s/thier/~/. The search pattern doesn’t
need to be the same, though.

For example, you could say :s/his/their/ on one line and repeat the replacement
on another with :s/her/~/.‖

\u or \l
Causes the next character in the replacement string to be changed to uppercase or
lowercase, respectively. For example, to change yes, doctor into Yes, Doctor, you
could say:

:%s/yes, doctor/\uyes, \udoctor/

This is a pointless example, though, since it’s easier just to type the replacement
string with initial caps in the first place. As with any regular expression, \u and
\l are most useful with a variable string. Take, for example, the command we used
earlier:

:%s/\(That\) or \(this\)/\2 or \1/

The result is this or That, but we need to adjust the cases. We’ll use \u to uppercase
the first letter in this (currently saved in hold buffer 2); we’ll use \l to lowercase
the first letter in That (currently saved in hold buffer 1):

:s/\(That\) or \(this\)/\u\2 or \l\1/

The result is This or that. (Don’t confuse the number one with the lowercase l; the
one comes after.)

\U or \L and \e or \E
\U and \L are similar to \u or \l, but all following characters are converted to
uppercase or lowercase until the end of the replacement string or until \e or \E is
reached. If there is no \e or \E, all characters of the replacement text are affected
by the \U or \L. For example, to uppercase Fortran, you could say:

‖ Modern versions of the ed editor use % as the sole character in the replacement text to mean “the replacement
text of the last substitute command.”

Pattern-Matching Rules | 79

www.it-ebooks.info

http://www.it-ebooks.info/


:%s/Fortran/\UFortran/

or, using the & character to repeat the search string:

:%s/Fortran/\U&/

All pattern searches are case-sensitive. That is, a search for the will not find The. You
can get around this by specifying both uppercase and lowercase in the pattern:

/[Tt]he

You can also instruct vi to ignore case by typing :set ic. See Chapter 7 for additional
details.

More Substitution Tricks
You should know some additional important facts about the substitute command:

• A simple :s is the same as :s//~/. In other words, repeat the last substitution. This
can save enormous amounts of time and typing when you are working your way
through a document making the same change repeatedly but you don’t want to
use a global substitution.

• If you think of the & as meaning “the same thing” (as in, what was just matched),
this command is relatively mnemonic. You can follow the & with a g, to make the
substitution globally on the line, and even use it with a line range:

:%&g    Repeat the last substitution everywhere

• The &  key can be used as a vi command to perform the :& command, i.e., to repeat
the last substitution. This can save even more typing than :s ENTER —one key-
stroke versus three.

• The :~ command is similar to the :& command but with a subtle difference. The
search pattern used is the last regular expression used in any command, not nec-
essarily the one used in the last substitute command.

For example,# in the sequence:

:s/red/blue/
:/green
:~

the :~ is equivalent to :s/green/blue/.

• Besides the / character, you may use any nonalphanumeric, nonwhitespace char-
acter as your delimiter, except backslash, double quotes, and the vertical bar (\,
", and |). This is particularly handy when you have to make a change to a pathname.

:%s;/user1/tim;/home/tim;g

• When the edcompatible option is enabled, vi remembers the flags (g for global and
c for confirmation) used on the last substitution and applies them to the next one.

# Thanks to Keith Bostic, in the nvi documentation, for this example.

80 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


This is most useful when you are moving through a file and you wish to make global
substitutions. You can make the first change:

:s/old/new/g
:set edcompatible

and after that, subsequent substitute commands will be global.

Despite the name, no known version of Unix ed actually works this way.

Pattern-Matching Examples
Unless you are already familiar with regular expressions, the preceding discussion of
special characters probably looks forbiddingly complex. A few more examples should
make things clearer. In the examples that follow, a square (□) is used to mark a space;
it is not a special character.

Let’s work through how you might use some special characters in a replacement. Sup-
pose that you have a long file and that you want to substitute the word child with the
word children throughout that file. You first save the edited buffer with :w, then try the
global replacement:

:%s/child/children/g

When you continue editing, you notice occurrences of words such as childrenish. You
have unintentionally matched the word childish. Returning to the last saved buffer
with :e!, you now try:

:%s/child□/children□/g

(Note that there is a space after child.) But this command misses the occurrences child.,
child,, child: and so on. After some thought, you remember that brackets allow you to
specify one character from among a list, so you realize a solution:

:%s/child[□,.;:!?]/children[□,.;:!?]/g

This searches for child followed by either a space (indicated by □) or any one of the
punctuation characters ,.;:!?. You expect to replace this with children followed by the
corresponding space or punctuation mark, but you’ve ended up with a bunch of
punctuation marks after every occurrence of children. You need to save the space and
punctuation marks inside a \( and \). Then you can “replay” them with a \1. Here’s
the next attempt:

:%s/child\([□,.;:!?]\)/children\1/g

When the search matches a character inside the \( and \), the \1 on the righthand side
restores the same character. The syntax may seem awfully complicated, but this
command sequence can save you a lot of work. Any time you spend learning regular
expression syntax will be repaid a thousandfold!

Pattern-Matching Examples | 81

www.it-ebooks.info

http://www.it-ebooks.info/


The command is still not perfect, though. You’ve noticed that occurrences of Fair-
child have been changed, so you need a way to match child when it isn’t part of another
word.

As it turns out, vi (but not all other programs that use regular expressions) has a special
syntax for saying “only if the pattern is a complete word.” The character sequence \<
requires the pattern to match at the beginning of a word, whereas \> requires the pattern
to match at the end of a word. Using both will restrict the match to a whole word. So,
in the example task, \<child\> will find all instances of the word child, whether followed
by punctuation or spaces. Here’s the substitution command you should use:

:%s/\<child\>/children/g

Search for General Class of Words
Suppose your subroutine names begin with the prefixes mgi, mgr, and mga:

 mgibox routine,
 mgrbox routine,
 mgabox routine,

If you want to save the prefixes, but want to change the name box to square, either of
the following replacement commands will do the trick. The first example illustrates
how \( and \) can be used to save whatever pattern was actually matched. The second
example shows how you can search for one pattern but change another:

:g/mg\([ira]\)box/s//mg\1square/g

 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,

The global replacement keeps track of whether an i, r, or a is saved. In that way, box
is changed to square only when box is part of the routine’s name.

:g/mg[ira]box/s/box/square/g

 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,

This has the same effect as the previous command, but it is a little less safe since it could
change other instances of box on the same line, not just those within the routine names.

Block Move by Patterns
You can also move blocks of text delimited by patterns. For example, assume you have
a 150-page reference manual written in troff. Each page is organized into three
paragraphs with the same three headings: SYNTAX, DESCRIPTION, and
PARAMETERS. A sample of one reference page follows:

82 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


.Rh 0 "Get status of named file" "STAT"

.Rh "SYNTAX"

.nf
integer*4 stat, retval
integer*4 status(11)
character*123 filename
...
retval = stat (filename, status)
.fi
.Rh "DESCRIPTION"
Writes the fields of a system data structure into the
status array.
These fields contain (among other
things) information about the file's location, access
privileges, owner, and time of last modification.
.Rh "PARAMETERS"
.IP "\fBfilename\fR" 15n
A character string variable or constant containing
the Unix pathname for the file whose status you want
to retrieve.
You can give the ...

Suppose that you decide to move DESCRIPTION above the SYNTAX paragraph. With
pattern matching, you can move blocks of text on all 150 pages with one command!

:g /SYNTAX/.,/DESCRIPTION/-1 move /PARAMETERS/-1

This command works as follows. First, ex finds and marks each line that matches the
first pattern (i.e., that contains the word SYNTAX). Second, for each marked line, it
sets . (dot, the current line) to that line, and executes the command. Using the move
command, the command moves the block of lines from the current line (dot) to the
line before the one containing the word DESCRIPTION (/DESCRIPTION/-1) to just
before the line containing PARAMETERS (/PARAMETERS/-1).

Note that ex can place text only below the line specified. To tell ex to place text above
a line, you first subtract one with -1, and then ex places your text below the previous
line. In a case like this, one command saves literally hours of work. (This is a real-life
example—we once used a pattern match like this to rearrange a reference manual
containing hundreds of pages.)

Block definition by patterns can be used equally well with other ex commands. For
example, if you wanted to delete all DESCRIPTION paragraphs in the reference chap-
ter, you could enter:

:g/DESCRIPTION/,/PARAMETERS/-1d

This very powerful kind of change is implicit in ex’s line addressing syntax, but it is not
readily apparent even to experienced users. For this reason, whenever you are faced
with a complex, repetitive editing task, take the time to analyze the problem and find
out if you can apply pattern-matching tools to get the job done.

Pattern-Matching Examples | 83

www.it-ebooks.info

http://www.it-ebooks.info/


More Examples
Since the best way to learn pattern matching is by example, here is a list of pattern-
matching examples, with explanations. Study the syntax carefully, so that you under-
stand the principles at work. You should then be able to adapt these examples to your
own situation:

1. Put troff italicization codes around the word ENTER:

:%s/ENTER/\\fI&\\fP/g

Notice that two backslashes (\\) are needed in the replacement, because the back-
slash in the troff italicization code will be interpreted as a special character. (\fI
alone would be interpreted as fI; you must type \\fI to get \fI.)

2. Modify a list of pathnames in a file:

:%s/\/home\/tim/\/home\/linda/g

A slash (used as a delimiter in the global replacement sequence) must be escaped
with a backslash when it is part of the pattern or replacement; use \/ to get /. An
alternate way to achieve this same effect is to use a different character as the pattern
delimiter. For example, you could make the previous replacement using colons as
delimiters. (The delimiter colons and the ex command colon are separate entities.)
Thus:

:%s:/home/tim:/home/linda:g

This is much more readable.

3. Put HTML italicization codes around the word ENTER:

:%s:ENTER:<I>&</I>:g

Notice here the use of & to represent the text that was actually matched, and, as
just described, the use of colons as delimiters instead of slashes.

4. Change all periods to semicolons in lines 1 to 10:

:1,10s/\./;/g

A dot has special meaning in regular expression syntax and must be escaped with
a backslash (\.).

5. Change all occurrences of the word help (or Help) to HELP:

:%s/[Hh]elp/HELP/g

or:

:%s/[Hh]elp/\U&/g

The \U changes the pattern that follows to all uppercase. The pattern that follows
is the repeated search pattern, which is either help or Help.

6. Replace one or more spaces with a single space:

84 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


:%s/□□*/□/g

Make sure you understand how the asterisk works as a special character. An as-
terisk following any character (or following any regular expression that matches a
single character, such as . or [[:lower:]]) matches zero or more instances of that
character. Therefore, you must specify two spaces followed by an asterisk to match
one or more spaces (one space, plus zero or more spaces).

7. Replace one or more spaces following a colon with two spaces:

:%s/:□□*/:□□/g
8. Replace one or more spaces following a period or a colon with two spaces:

:%s/\([:.]\)□□*/\1□□/g

Either of the two characters within brackets can be matched. This character is saved
into a hold buffer, using \( and \), and restored on the righthand side by the \1.
Note that within brackets a special character such as a dot does not need to be
escaped.

9. Standardize various uses of a word or heading:

:%s/^Note[□:s]*/Notes:□/g

The brackets enclose three characters: a space, a colon, and the letter s. Therefore,
the pattern Note[□s:] will match Note□, Notes, or Note:. An asterisk is added to
the pattern so that it also matches Note (with zero spaces after it) and Notes: (the
already correct spelling). Without the asterisk, Note would be missed entirely and
Notes: would be incorrectly changed to Notes:□:.

10. Delete all blank lines:

:g/^$/d

What you are actually matching here is the beginning of the line (^) followed by
the end of the line ($), with nothing in between.

11. Delete all blank lines, plus any lines that contain only whitespace:

:g/^[□tab]*$/d

(In the example, a tab is shown as tab.) A line may appear to be blank, but may in
fact contain spaces or tabs. The previous example will not delete such a line. This
example, like the previous one, searches for the beginning and end of the line. But
instead of having nothing in between, the pattern tries to find any number of spaces
or tabs. If no spaces or tabs are matched, the line is blank. To delete lines that
contain whitespace but that aren’t empty, you would have to match lines with at
least one space or tab:

:g/^[□tab][□tab]*$/d
12. Delete all leading spaces on every line:

:%s/^□□*\(.*\)/\1/

Pattern-Matching Examples | 85

www.it-ebooks.info

http://www.it-ebooks.info/


Use ^□□* to search for one or more spaces at the beginning of each line; then use
\(.*\) to save the rest of the line into the first hold buffer. Restore the line without
leading spaces, using \1.

13. Delete all spaces at the end of every line:

:%s/\(.*\)□□*$/\1/

For each line, use \(.*\) to save all the text on the line, but only up until one or
more spaces at the end of the line. Restore the saved text without the spaces.

The substitutions in this example and the previous one will happen only once on
any given line, so the g option doesn’t need to follow the replacement string.

14. Insert a >□□ at the start of every line in a file:

:%s/^/>□□/

What we’re really doing here is “replacing” the start of the line with >□□. Of course,
the start of the line (being a logical construct, not an actual character) isn’t really
replaced!

This command is useful when replying to mail or Usenet news postings. Frequent-
ly, it is desirable to include part of the original message in your reply. By convention,
the inclusion is distinguished from your reply by setting off the included text with
a right angle bracket and a couple of spaces at the start of the line. This can be done
easily, as shown in the example. (Typically, only part of the original message will
be included. Unneeded text can be deleted either before or after the replacement.)
Advanced mail systems do this automatically. However, if you’re using vi to edit
your mail, you can do it with this command.

15. Add a period to the end of the next six lines:

:.,+5s/$/./

The line address indicates the current line plus five lines. The $ indicates the end
of line. As in the previous example, the $ is a logical construct. You aren’t really
replacing the end of the line.

16. Reverse the order of all hyphen-separated items in a list:

:%s/\(.*\)□-□\(.*\)/\2□-□\1/

Use \(.*\) to save text on the line into the first hold buffer, but only until you find
□-□. Then use \(.*\) to save the rest of the line into the second hold buffer. Restore
the saved portions of the line, reversing the order of the two hold buffers. The effect
of this command on several items is shown here:

more - display files

becomes:

display files - more

86 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


and:

lp - print files

becomes:

print files - lp

17. Change every letter in a file to uppercase:

:%s/.*/\U&/

or:

:%s/./\U&/g

The \U flag at the start of the replacement string tells vi to change the replacement
to uppercase. The & character replays the text matched by the search pattern as the
replacement. These two commands are equivalent; however, the first form is con-
siderably faster, since it results in only one substitution per line (.* matches the
entire line, once per line), whereas the second form results in repeated substitutions
on each line (. matches only a single character, with the replacement repeated on
account of the trailing g).

18. Reverse the order of lines in a file:*

:g/.*/mo0

The search pattern matches all lines (a line contains zero or more characters). Each
line is moved, one by one, to the top of the file (that is, moved after imaginary line
0). As each matched line is placed at the top, it pushes the previously moved lines
down, one by one, until the last line is on top. Since all lines have a beginning, the
same result can be achieved more succinctly:

:g/^/mo0

19. In a text-file database, on all lines not marked Paid in full, append the phrase
Overdue:

:g!/Paid in full/s/$/ Overdue/

or the equivalent:

:v/Paid in full/s/$/ Overdue/

To affect all lines except those matching your pattern, add a ! to the g command,
or simply use the v command.

20. For any line that doesn’t begin with a number, move the line to the end of the file:

:g!/^[[:digit:]]/m$

or:

:g/^[^[:digit:]]/m$

* From an article by Walter Zintz in Unix World, May 1990.

Pattern-Matching Examples | 87

www.it-ebooks.info

http://www.it-ebooks.info/


As the first character within brackets, a caret negates the sense, so the two com-
mands have the same effect. The first one says, “Don’t match lines that begin with
a number,” and the second one says, “Match lines that don’t begin with a number.”

21. Change manually numbered section heads (e.g., 1.1, 1.2, etc.) to a troff macro
(e.g., .Ah for an A-level heading):

:%s/^[1-9]\.[1-9]/.Ah/

The search string matches a digit other than zero, followed by a period, followed
by another nonzero digit. Notice that the period doesn’t need to be escaped in the
replacement (though a \ would have no effect, either). The command just shown
won’t find chapter numbers containing two or more digits. To do so, modify the
command like this:

:%s/^[1-9][0-9]*\.[1-9]/.Ah/

Now it will match chapters 10 to 99 (digits 1 to 9, followed by a digit), 100 to 999
(digits 1 to 9, followed by two digits), etc. The command still finds chapters 1 to
9 (digits 1 to 9, followed by no digit).

22. Remove numbering from section headings in a document. You want to change the
sample lines:

2.1 Introduction
10.3.8 New Functions

into the lines:

Introduction
New Functions

Here’s the command to do this:

:%s/^[1-9][0-9]*\.[1-9][0-9.]*□//

The search pattern resembles the one in the previous example, but now the num-
bers vary in length. At a minimum, the headings contain number, period, number,
so you start with the search pattern from the previous example:

[1-9][0-9]*\.[1-9]

But in this example, the heading may continue with any number of digits or periods:

[0-9.]*

23. Change the word Fortran to the phrase FORTRAN (acronym of FORmula
TRANslation):

:%s/\(For\)\(tran\)/\U\1\2\E□(acronym□of□\U\1\Emula□\U\2\Eslation)/g

First, since we notice that the words FORmula and TRANslation use portions of
the original words, we decide to save the search pattern in two pieces: \(For\) and
\(tran\). The first time we restore it, we use both pieces together, converting all
characters to uppercase: \U\1\2. Next, we undo the uppercase with \E; otherwise,

88 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


the remaining replacement text would all be uppercase. The replacement continues
with actual typed words, and then we restore the first hold buffer. This buffer still
contains For, so again we convert to uppercase first: \U\1. Immediately after, we
lowercase the rest of the word: \Emula. Finally, we restore the second hold buffer.
This contains tran, so we precede the “replay” with uppercase, follow it with
lowercase, and type out the rest of the word: \U\2\Eslation).

A Final Look at Pattern Matching
We conclude this chapter by presenting sample tasks that involve complex pattern-
matching concepts. Rather than solve the problems right away, we’ll work toward the
solutions step by step.

Deleting an Unknown Block of Text
Suppose you have a few lines with this general form:

the best of times; the worst of times:  moving
The coolest of times; the worst of times:  moving

The lines that you’re concerned with always end with moving, but you never know
what the first two words might be. You want to change any line that ends with mov-
ing to read:

The greatest of times; the worst of times:  moving

Since the changes must occur on certain lines, you need to specify a context-sensitive
global replacement. Using :g/moving$/ will match lines that end with moving. Next,
you realize that your search pattern could be any number of any character, so the
metacharacters .* come to mind. But these will match the whole line unless you some-
how restrict the match. Here’s your first attempt:

:g/moving$/s/.*of/The□greatest□of/

This search string, you decide, will match from the beginning of the line to the first
of. Since you needed to specify the word of to restrict the search, you simply repeat it
in the replacement. Here’s the resulting line:

The greatest of times:  moving

Something went wrong. The replacement gobbled the line up to the second of instead
of the first. Here’s why: when given a choice, the action of “match any number of any
character” will match as much text as possible. In this case, since the word of appears
twice, your search string finds:

the best of times; the worst of

rather than:

the best of

A Final Look at Pattern Matching | 89

www.it-ebooks.info

http://www.it-ebooks.info/


Your search pattern needs to be more restrictive:

:g/moving$/s/.*of times;/The greatest of times;/

Now the .* will match all characters up to the instance of the phrase of times;. Since
there’s only one instance, it has to be the first.

There are cases, though, when it is inconvenient, or even incorrect, to use the .*
metacharacters. For example, you might find yourself typing many words to restrict
your search pattern, or you might be unable to restrict the pattern by specific words (if
the text in the lines varies widely). The next section presents such a case.

Switching Items in a Textual Database
Suppose you want to switch the order of all last names and first names in a (text)
database. The lines look like this:

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567
Name: Joy, Susan S.; Areas: Graphics; Phone: 999-3333

The name of each field ends with a colon, and each field is separated by a semicolon.
Using the top line as an example, you want to change Feld, Ray to Ray Feld. We’ll
present some commands that look promising but don’t work. After each command,
we show you the line the way it looked before the change and after the change.

:%s/: \(.*\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567     Before
Name: Unix Feld, Ray; Areas: PC; Phone: 123-4567      After

We’ve highlighted the contents of the first hold buffer in bold and the contents of the
second hold buffer in italic. Note that the first hold buffer contains more than you
want. Since it was not sufficiently restricted by the pattern that follows it, the hold
buffer was able to save up to the second comma. Now you try to restrict the contents
of the first hold buffer:

:%s/: \(....\), \(.*\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567     Before
Name: Ray; Areas: PC, Unix Feld; Phone: 123-4567      After

Here you’ve managed to save the last name in the first hold buffer, but now the second
hold buffer will save anything up to the last semicolon on the line. Now you restrict
the second hold buffer, too:

:%s/: \(....\), \(...\);/: \2 \1;/

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567     Before
Name: Ray Feld; Areas: PC, Unix; Phone: 123-4567      After

This gives you what you want, but only in the specific case of a four-letter last name
and a three-letter first name. (The previous attempt included the same mistake.) Why

90 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


not just return to the first attempt, but this time be more selective about the end of the
search pattern?

:%s/: \(.*\), \(.*\); Area/: \2 \1; Area/

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567     Before
Name: Ray Feld; Areas: PC, Unix; Phone: 123-4567      After

This works, but we’ll continue the discussion by introducing an additional concern.
Suppose that the Area field isn’t always present or isn’t always the second field. The
command just shown won’t work on such lines.

We introduce this problem to make a point. Whenever you rethink a pattern match,
it’s usually better to work toward refining the variables (the metacharacters), rather
than using specific text to restrict patterns. The more variables you use in your patterns,
the more powerful your commands will be.

In the current example, think again about the patterns you want to switch. Each word
starts with an uppercase letter and is followed by any number of lowercase letters, so
you can match the names like this:

[[:upper:]][[:lower:]]*

A last name might also have more than one uppercase letter (McFly, for example), so
you’d want to search for this possibility in the second and succeeding letters:

[[:upper:]][[:alpha:]]*

It doesn’t hurt to use this for the first name, too (you never know when McGeorge
Bundy will turn up). Your command now becomes:

:%s/: \([[:upper:]][[:alpha:]]*\), \([[:upper:]][[:alpha:]]*\);/: \2 \1;/

Quite forbidding, isn’t it? It still doesn’t cover the case of a name like Joy, Susan S. Since
the first-name field might include a middle initial, you need to add a space and a period
within the second pair of brackets. But enough is enough. Sometimes, specifying exactly
what you want is more difficult than specifying what you don’t want. In your sample
database, the last names end with a comma, so a last-name field can be thought of as
a string of characters that are not commas:

[^,]*

This pattern matches characters up until the first comma. Similarly, the first-name field
is a string of characters that are not semicolons:

[^;]*

Putting these more efficient patterns back into your previous command, you get:

:%s/: \([^,]*\), \([^;]*\);/: \2 \1;/

The same command could also be entered as a context-sensitive replacement. If all lines
begin with Name, you can say:

:g/^Name/s/: \([^,]*\), \([^;]*\);/: \2 \1;/

A Final Look at Pattern Matching | 91

www.it-ebooks.info

http://www.it-ebooks.info/


You can also add an asterisk after the first space, in order to match a colon that has
extra spaces (or no spaces) after it:

:g/^Name/s/: *\([^,]*\), \([^;]*\);/: \2 \1;/

Using :g to Repeat a Command
In the usual way we’ve seen the :g command used, it selects lines that are typically then
edited by subsequent commands on the same line—for example, we select lines with
g, and then make substitutions on them, or select them and delete them:

:g/mg[ira]box/s/box/square/g
:g/^$/d

However, in his two-part tutorial in Unix World,† Walter Zintz makes an interesting
point about the g command. This command selects lines, but the associated editing
commands need not actually affect the lines that are selected.

Instead, he demonstrates a technique by which you can repeat ex commands some
arbitrary number of times. For example, suppose you want to place 10 copies of lines
12 through 17 of your file at the end of your current file. You could type:

:1,10g/^/ 12,17t$

This is a very unexpected use of g, but it works! The g command selects line 1, executes
the specified t command, then goes on to line 2 to execute the next copy command.
When line 10 is reached, ex will have made 10 copies.

Collecting Lines
Here’s another advanced g example, again building on suggestions provided in Zintz’s
article. Suppose you’re editing a document that consists of several parts. Part 2 of this
file is shown here, using ellipses to show omitted text and displaying line numbers for
reference:

301  Part 2
302  Capability Reference
303  .LP
304  Chapter 7
305  Introduction to the Capabilities
306  This and the next three chapters ...

400  ... and a complete index at the end.
401  .LP
402  Chapter 8
403  Screen Dimensions
404  Before you can do anything useful
405  on the screen, you need to know ...

† Part one, “vi Tips for Power Users,” appears in the April 1990 issue of UNIX World. Part two, “Using vi to
Automate Complex Edits,” appears in the May 1990 issue. The examples presented are from Part 2.

92 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


555  .LP
556  Chapter 9
557  Editing the Screen
558  This chapter discusses ...

821  .LP
822  Part 3:
823  Advanced Features
824  .LP
825  Chapter 10

The chapter numbers appear on one line, their titles appear on the line below, and the
chapter text (marked in bold for emphasis) begins on the line below that. The first thing
you’d like to do is copy the beginning line of each chapter, sending it to an already
existing file called begin.

Here’s the command that does this:

:g /^Chapter/ .+2w >> begin

You must be at the top of your file before issuing this command. First, you search for
Chapter at the start of a line, but then you want to run the command on the beginning
line of each chapter—the second line below Chapter. Because a line beginning with
Chapter is now selected as the current line, the line address .+2 will indicate the second
line below it. The equivalent line addresses +2 or ++ work as well. You want to write
these lines to an existing file named begin, so you issue the w command with the append
operator >>.

Suppose you want to send the beginnings of chapters that are only within Part 2. You
need to restrict the lines selected by g, so you change your command to this:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin

Here, the g command selects the lines that begin with Chapter, but it searches only that
portion of the file from a line starting with Part 2 through a line starting with Part 3. If
you issue the command just shown, the last lines of the file begin will read as follows:

This and the next three chapters ...
Before you can do anything useful
This chapter discusses ...

These are the lines that begin Chapters 7, 8, and 9.

In addition to the lines you’ve just sent, you’d like to copy chapter titles to the end of
the document, in preparation for making a table of contents. You can use the vertical
bar to tack on a second command after your first command, like so:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin | +t$

Remember that with any subsequent command, line addresses are relative to the pre-
vious command. The first command has marked lines (within Part 2) that start with
Chapter, and the chapter titles appear on a line below such lines. Therefore, to access

A Final Look at Pattern Matching | 93

www.it-ebooks.info

http://www.it-ebooks.info/


chapter titles in the second command, the line address is + (or the equivalents +1
or .+1). Then, use t$ to copy the chapter titles to the end of the file.

As these examples illustrate, thought and experimentation may lead you to some un-
usual editing solutions. Don’t be afraid to try things. Just be sure to back up your file
first! (Of course, with the infinite “undo” facilities in the clones, you may not even need
to save a backup copy.)

94 | Chapter 6: Global Replacement

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 7

Advanced Editing

This chapter introduces you to some of the more advanced capabilities of the vi and
ex editors. You should be reasonably familiar with the material presented in the earlier
chapters of this book before you start working with the concepts presented here.

We have divided this chapter into five parts. The first part discusses a number of ways
to set options that allow you to customize your editing environment. You’ll learn how
to use the set command and how to create a number of different editing environments
using .exrc files.

The second part discusses how you can execute Unix commands from within vi, and
how you can use vi to filter text through Unix commands.

The third part discusses various ways to save long sequences of commands by reducing
them to abbreviations, or even to commands that use only one keystroke (this is called
mapping keys). It also includes a section on @-functions, which allow you to store
command sequences in a buffer.

The fourth part discusses the use of ex scripts from the Unix command line or from
within shell scripts. Scripting provides a powerful way to make repetitive edits.

The fifth part discusses some features of vi that are especially useful to programmers.
vi has options that control line indentation and an option to display invisible characters
(specifically tabs and newlines). There are search commands that are useful with pro-
gram code blocks or with C functions.

Customizing vi
vi operates differently on various terminals. On modern Unix systems, vi gets operating
instructions about your terminal type from the terminfo terminal database. (On older
systems, vi uses the original termcap database.)*

* The location of these two databases varies from vendor to vendor. Try the commands man terminfo and
man termcap to get more information about your specific system.

95

www.it-ebooks.info

http://www.it-ebooks.info/


There are also a number of options that you can set from within vi that affect how it
operates. For example, you can set a right margin that will cause vi to wrap lines au-
tomatically, so you don’t need to hit ENTER .

You can change options from within vi by using the ex command :set. In addition,
whenever vi is started up, it reads a file in your  home directory called .exrc for further
operating instructions. By placing :set commands in this file, you can modify the way
vi acts whenever you use it.

You can also set up .exrc files in local directories to initialize various options that you
want to use in different environments. For example, you might define one set of options
for editing English text, but another set for editing source programs. The .exrc file in
your home directory will be executed first, and then the one in your current directory.

Finally, any commands stored in the environment variable EXINIT will be executed by
vi on startup. The settings in EXINIT take precedence over those in the home
directory .exrc file.

The :set Command
There are two types of options that can be changed with the :set command: toggle
options, which are either on or off, and options that take a numeric or string value (such
as the location of a margin or the name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the command
is:

:set option

To turn a toggle option off, the command is:

:set nooption

For example, to specify that pattern searches should ignore case, type:    

:set ic

If you want vi to return to being case-sensitive in searches, give the command:

:set noic

Some options have a value assigned to them. For example, the window option sets the
number of lines shown in the screen’s “window.” You set values for these options with
an equals sign (=):

:set window=20

During a vi session, you can check which options vi is using. The command:

:set all

displays the complete list of options, including options that you have set and defaults
that vi has “chosen.”

96 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


The display should look something like this:†

autoindent         nomodelines                       noshowmode
autoprint          nonumber                          noslowopen
noautowrite        nonovice                          tabstop=8
beautify           nooptimize                        taglength=0
directory=/var/tmp paragraphs=IPLPPPQPP LIpplpipnpbp tags=tags /usr/lib/tags
noedcompatible     prompt                            tagstack
errorbells         noreadonly                        term=vt102
noexrc             redraw                            noterse
flash              remap                             timeout
hardtabs=8         report=5                          ttytype=vt102
noignorecase       scroll=11                         warn
nolisp             sections=NHSHH HUuhsh+c           window=23
nolist             shell=/bin/ksh                    wrapscan
magic              shiftwidth=8                      wrapmargin=0
nomesg             showmatch                         nowriteany

You can find out the current value of any individual option by name, using the
command:

:set option?

The command:

:set

shows options that you have specifically changed, or set, either in your .exrc file or
during the current session.

For example, the display might look like this:

number sect=AhBhChDh window=20 wrapmargin=10

The .exrc File
The .exrc file that controls your own vi environment is in your home directory (the
directory you are in when you first log on). You can modify the .exrc file with the vi
editor, just as you can any other text file.

If you don’t yet have an .exrc file, simply use vi to create one. Enter into this file the
set, ab, and map commands that you want to have in effect whenever you use vi or ex.
(ab and map are discussed later in this chapter.) A sample .exrc file might look like this:

set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
map v dwElp
ab ORA O'Reilly Media, Inc.

† The result of :set all depends very much on the version of vi you have. This particular display is typical of
Unix vi; what comes out of the various clones will be different. The order is alphabetical going down the
columns, ignoring any leading no.

Customizing vi | 97

www.it-ebooks.info

http://www.it-ebooks.info/


Since the file is actually read by ex before it enters visual mode (vi), commands
in .exrc need not have a preceding colon.

Alternate Environments
In addition to reading the .exrc file in your home directory, you can allow vi to read a
file called .exrc in the current directory. This lets you set options that are appropriate
to a particular project.

In all modern versions of vi, you have to first set the exrc option in your home direc-
tory’s .exrc file before vi will read the .exrc file in the current directory:

set exrc

This mechanism prevents other people from placing, in your working directory,
an .exrc file whose commands might jeopardize the security of your system.‡

For example, you might want to have one set of options in a directory mainly used for
programming:

set number autoindent sw=4 terse
set tags=/usr/lib/tags

and another set of options in a directory used for text editing:

set wrapmargin=15 ignorecase

Note that you can set certain options in the .exrc file in your home directory and unset
them in a local directory.

You can also define alternate vi environments by saving option settings in a file other
than .exrc and reading in that file with the :so command. (so is short for source.)

For example:

:so .progoptions

Local .exrc files are also useful for defining abbreviations and key mappings (described
later in this chapter). When we write a book or manual, we save all abbreviations to be
used in that book in an .exrc file in the directory in which the book is being created.

Some Useful Options
As you can see when you type :set all, there are an awful lot of options that can be
set. Many of them are used internally by vi and aren’t usually changed. Others are
important in certain cases but not in others (for example, noredraw and window can be
useful over a cross-continental ssh session). Table B-1 in the section “Solaris vi Options”
on page 415 contains a brief description of each option. We recommend that you take

‡ The original versions of vi automatically read both files, if they existed. The exrc option closes a potential
security hole.

98 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


some time to play with setting options. If an option looks interesting, try setting it (or
unsetting it) and watch what happens while you edit. You may find some surprisingly
useful tools.

As discussed earlier in the section “Movement Within a Line” on page 16, one option,
wrapmargin, is essential for editing nonprogram text. wrapmargin specifies the size of the
right margin that will be used to autowrap text as you type. (This saves manually typing
carriage returns.) A typical value is 7 to 15:

:set wrapmargin=10

Three other options control how vi acts when conducting a search. Normally, a search
differentiates between uppercase and lowercase (foo does not match Foo), wraps
around to the beginning of the file (meaning that you can begin your search anywhere
in the file and still find all occurrences), and recognizes wildcard characters when pat-
tern matching. The default settings that control these options are noignorecase,
wrapscan, and magic, respectively. To change any of these defaults, you would set the
opposite toggle options: ignorecase, nowrapscan, and nomagic.

Options that may be of particular interest to programmers include autoindent,
showmatch, tabstop, shiftwidth, number, and list, as well as their opposite toggle
options.

Finally, consider using the autowrite option. When set, vi will automatically write out
the contents of a changed buffer when you issue the :n (next) command to move to the
next file to be edited, and before running a shell command with :!.

Executing Unix Commands
You can display or read in the results of any Unix command while you are editing in
vi. An exclamation mark (!) tells ex to create a shell and to regard what follows as a
Unix command:    

:!command

So if you are editing and you want to check the time or date without exiting vi, you
can enter: 

:!date

The time and date will appear on your screen; press ENTER  to continue editing at the
same place in your file.

If you want to give several Unix commands in a row without returning to vi editing in
between, you can create a shell with the ex command:

:sh

When you want to exit the shell and return to vi, press CTRL-D .

Executing Unix Commands | 99

www.it-ebooks.info

http://www.it-ebooks.info/


You can combine :read with a call to Unix, to read the results of a Unix command into
your file. As a very simple example:

:r !date

will read in the system’s date information into the text of your file. By preceding
the :r command with a line address, you can read the result of the command in at any
desired point in your file. By default, it will appear after the current line.

Suppose you are editing a file and want to read in four phone numbers from a file called
phone, but in alphabetical order. phone reads:

Willing, Sue  333-4444
Walsh, Linda  555-6666
Quercia, Valerie  777-8888
Dougherty, Nancy  999-0000

The command: 

:r !sort phone

reads in the contents of phone after they have been passed through the sort filter:

Dougherty, Nancy  999-0000
Quercia, Valerie  777-8888
Walsh, Linda  555-6666
Willing, Sue  333-4444

Suppose you are editing a file and want to insert text from another file in the directory,
but you can’t remember the new file’s name. You could perform this task the long way:
exit your file, give the ls command, note the correct filename, reenter your file, and
search for your place.

Or you could do the task in fewer steps:

Keystrokes Results

:!ls  file1        file2         letter
 newfile      practice

Display a list of files in the current directory. Note the correct filename. Press ENTER  to
continue editing.

:r newfile  "newfile" 35 lines, 949 characters

Read in the new file.

Filtering Text Through a Command
You can also send a block of text as standard input to a Unix command. The output
from this command replaces the block of text in the buffer. You can filter text through
a command from either ex or vi. The main difference between the two methods is that
you indicate the block of text with line addresses in ex and with text objects (movement
commands) in vi.

100 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Filtering text with ex

The first example demonstrates how to filter text with ex. Assume that the list of names
in the preceding example, instead of being contained in a separate file called phone, is
already contained in the current file on lines 96 through 99. You simply type the
addresses of the lines you want to filter, followed by an exclamation mark and the Unix
command to be executed. For example, the command:

:96,99!sort

will pass lines 96 through 99 through the sort filter and replace those lines with the
output of sort.

Filtering text with vi

In vi, text is filtered through a Unix command by typing an exclamation mark followed
by any of vi’s movement keystrokes that indicate a block of text, and then by the Unix
command line to be executed. For example:

!)command

will pass the next sentence through command.

There are a few unusual aspects of the way vi acts when you use this feature:

• The exclamation mark doesn’t appear on your screen right away. When you type
the keystroke(s) for the text object you want to filter, the exclamation mark appears
at the bottom of the screen, but the character you type to reference the object does not.

• Text blocks must be more than one line, so you can use only the keystrokes that
would move more than one line ( G, { }, ( ), [[ ]], +, - ). To repeat the effect, a
number may precede either the exclamation mark or the text object. (For example,
both !10+ and 10!+ would indicate the next 10 lines.) Objects such as w do not work
unless enough of them are specified so as to exceed a single line. You can also use
a slash (/) followed by a pattern and a carriage return to specify the object. This
takes the text up to the pattern as input to the command.

• Entire lines are affected. For example, if your cursor is in the middle of a line and
you issue a command to go to the end of the next sentence, the entire lines con-
taining the beginning and end of the sentence will be changed, not just the sentence
itself.§

• There is a special text object that can be used only with this command syntax: you
can specify the current line by entering a second exclamation mark:  

!!command

§ Of course, there’s always an exception. In this example, Vim changes only the current line.

Executing Unix Commands | 101

www.it-ebooks.info

http://www.it-ebooks.info/


Remember that either the entire sequence or the text object can be preceded by a
number to repeat the effect. For instance, to change lines 96 through 99 as in the
previous example, you could position the cursor on line 96 and enter either:

4!!sort

or:

!4!sort

As another example, assume you have a portion of text in a file that you want to change
from lowercase to uppercase letters. You could process that portion with the tr com-
mand to change the case. In this example, the second sentence is the block of text that
will be filtered through the command:

 One sentence before.
 With a screen editor you can scroll the page
 move the cursor, delete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 One sentence after.

Keystrokes Results

!)  One sentence after.
 ~
 ~
 ~
 ! 

An exclamation mark appears on the last line to prompt you for the Unix
command. The ) indicates that a sentence is the unit of text to be filtered.

tr '[:lower:]' '[:upper:]'  One sentence before.
 WITH A SCREEN EDITOR YOU CAN SCROLL THE PAGE
 MOVE THE CURSOR, DELETE LINES, INSERT CHARACTERS,
 AND MORE, WHILE SEEING THE RESULTS OF YOUR EDITS
 AS YOU MAKE THEM.
 One sentence after.

Enter the Unix command and press ENTER . The input is replaced by the
output.

To repeat the previous command, the syntax is:

! object !

It is sometimes useful to send sections of a coded document to nroff to be replaced by
formatted output. (Or, when editing electronic mail, you might use the fmt program
to “beautify” your text before sending the message.) Remember that the “original”
input is replaced by the output. Fortunately, if there is a mistake—such as an error
message being sent instead of the expected output—you can undo the command and
restore the lines.

102 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Saving Commands
Often you type the same long phrases over and over in a file. vi and ex have a number
of different ways of saving long sequences of commands, both in command mode and
in insert mode. When you call up one of these saved sequences to execute it, all you
do is type a few characters (or even only one), and the entire sequence is executed as if
you had entered the whole sequence of commands one by one.

Word Abbreviation
You can define abbreviations that vi will automatically expand into the full text when-
ever you type the abbreviation in insert mode. To define an abbreviation, use this ex
command: 

:ab abbr phrase

abbr is an abbreviation for the specified phrase. The sequence of characters that make
up the abbreviation will be expanded in insert mode only if you type it as a full word;
abbr will not be expanded within a word.

Suppose in the file practice you want to enter text that contains a frequently recurring
phrase, such as a difficult product or company name. The command:

:ab imrc International Materials Research Center

abbreviates International Materials Research Center to the initials imrc. Now whenever
you type imrc in insert mode, imrc expands to the full text.

Keystrokes Results

ithe imrc  the International Materials Research Center

Abbreviations expand as soon as you press a nonalphanumeric character (e.g., punc-
tuation), a space, a carriage return, or ESC  (returning to command mode). When you
are choosing abbreviations, choose combinations of characters that don’t ordinarily
occur while you are typing text. If you create an abbreviation that ends up expanding
in places where you don’t want it to, you can disable the abbreviation by typing:

:unab abbr

To list your currently defined abbreviations, type:

:ab

The characters that compose your abbreviation cannot also appear at the end of your
phrase. For example, if you issue the command:

:ab PG This movie is rated PG

Saving Commands | 103

www.it-ebooks.info

http://www.it-ebooks.info/


you’ll get the message “No tail recursion,” and the abbreviation won’t be set. The
message means that you have tried to define something that will expand itself repeat-
edly, creating an infinite loop. If you issue the command:

:ab PG the PG rating system

you may or may not produce an infinite loop, but in either case you won’t get a warning
message. For example, when the above command was tested on a System V version of
Unix, the expansion worked. Circa 1990 on a Berkeley version, the abbreviation
expanded repeatedly, like this:

the the the the the ...

until a memory error occurred and vi quit.

When tested, we obtained the following results on these vi versions:

Solaris vi
The tail recursive version is not allowed, while the version with the name in the
middle of the expansion expands only once.

nvi 1.79
Both versions exceed an internal expansion limit, the expansion stops, and nvi
produces an error message.

elvis, Vim, and vile
Both forms are detected and expand only once.

If you are using Unix vi or nvi, we recommend that you avoid repeating your abbre-
viation as part of the defined phrase.

Using the map Command
While you’re editing, you may find that you are using a command sequence frequently,
or that you occasionally use a very complex command sequence. To save yourself key-
strokes, or the time that it takes to remember the sequence, you can assign the sequence
to an unused key by using the map command.

The map command acts a lot like ab except that you define a macro for vi’s command
mode instead of for insert mode:

:map x sequence
Define character x as a sequence of editing commands.

:unmap x
Disable the sequence defined for x.

:map
List the characters that are currently mapped.

104 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Before you can start creating your own maps, you need to know the keys not used in
command mode that are available for user-defined commands:

Letters
g, K, q, V, and v

Control keys
^A, ^K, ^O, ^W, and ^X

Symbols
_, *, \, and =

The = is used by vi if Lisp mode is set, and to do text formatting by
several of the clones. In many modern versions of vi, the _ is equivalent
to the ^ command, and elvis and Vim have a “visual mode” that uses
the v, V, and ^V keys. The moral is to test your version carefully.

Depending on your terminal, you may also be able to associate map sequences with
special function keys.

With maps, you can create simple or complex command sequences. As a simple ex-
ample, you could define a command to reverse the order of words. In vi, with the cursor
as shown:

you can the scroll page

the sequence to put the after scroll would be dwelp: delete word, dw; move to the end
of next word, e; move one space to the right, l; put the deleted word there, p. Saving
this sequence:

:map v dwelp

enables you to reverse the order of two words at any time in the editing session with
the single keystroke v.

Protecting Keys from Interpretation by ex
Note that when defining a map, you cannot simply type certain keys, such as EN-
TER , ESC , BACKSPACE , and DELETE , as part of the command to be mapped, be-
cause these keys already have meaning within ex. If you want to include one of these
keys as part of the command sequence, you must escape the normal meaning by pre-
ceding the key with CTRL-V . The keystroke ^V appears in the map as the ^ character.
Characters following the ^V also do not appear as you expect. For example, a carriage
return appears as ^M, escape as ^[, backspace as ^H, and so on.

On the other hand, if you want to use a control character as the character to be mapped,
in most cases all you have to do is hold down the CTRL  key and press the letter key
at the same time. So, for example, all you need to do in order to map ^A is to type:

:map CTRL-A  sequence

Saving Commands | 105

www.it-ebooks.info

http://www.it-ebooks.info/


There are, however, three control characters that must be escaped with a ̂ V. They are ̂ T,
^W, and ^X. So, for example, if you want to map ^T, you must type:

:map CTRL-V CTRL-T  sequence

The use of CTRL-V  applies to any ex command, not just a map command. This means
that you can type a carriage return in an abbreviation or a substitution command. For
example, the abbreviation:

:ab 123 one^Mtwo^Mthree

expands to this:

one
two
three

(Here we show the sequence CTRL-V  ENTER  as ^M, the way it would appear on your
screen.)

You can also globally add lines at certain locations. The command:

:g/^Section/s//As you recall, in^M&/

inserts, before all lines beginning with the word Section, a phrase on a separate line.
The & restores the search pattern.

Unfortunately, one character always has special meaning in ex commands, even if you
try to quote it with CTRL-V . Recall that the vertical bar (|) has special meaning as a
separator of multiple ex commands. You cannot use a vertical bar in insert mode maps.

Now that you’ve seen how to use CTRL-V  to protect certain keys inside ex commands,
you’re ready to define some powerful map sequences.

A Complex Mapping Example
Assume that you have a glossary with entries like this:

map - an ex command which allows you to associate
a complex command sequence with a single key.

You would like to convert this glossary list to troff format, so that it looks like this:

.IP "map" 10n
An ex command...

The best way to define a complex map is to do the edit once manually, writing down
each keystroke that you have to type. Then recreate these keystrokes as a map. You
want to:

1. Insert the MS macro for an indented paragraph at the beginning of the line. Insert
the first quotation mark as well (I.IP ").

2. Press ESC  to terminate insert mode.

106 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


3. Move to the end of the first word (e) and add a second quotation mark, followed
by a space and the size of the indent (a" 10n).

4. Press ENTER  to insert a new line.

5. Press ESC  to terminate insert mode.

6. Remove the hyphen and two surrounding spaces (3x) and capitalize the next word
(~).

That will be quite an editing chore if you have to repeat it more than just a few times.

With :map you can save the entire sequence so that it can be reexecuted with a single
keystroke:

:map g I.IP "^[ea" 10n^M^[3x~

Note that you have to “quote” both the ESC  and the ENTER  characters with CTRL-
V . ^[ is the sequence that appears when you type CTRL-V  followed by ESC . ^M is the
sequence shown when you type CTRL-V  ENTER .

Now, simply typing g will perform the entire series of edits. On a slow connection you
can actually see the edits happening individually. On a fast one it will seem to happen
by magic.

Don’t be discouraged if your first attempt at key mapping fails. A small error in defining
the map can give very different results from the ones you expect. Type u to undo the
edit, and try again.

More Examples of Mapping Keys
The following examples will give you an idea of the clever shortcuts possible when
defining keyboard maps:

1. Add text whenever you move to the end of a word:

:map e ea

Most of the time, the only reason you want to move to the end of a word is to add
text. This map sequence puts you in insert mode automatically. Note that the
mapped key, e, has meaning in vi. You’re allowed to map a key that is already used
by vi, but the key’s normal function will be unavailable as long as the map is in
effect. This isn’t so bad in this case, since the E command is often identical to e.

2. Transpose two words:

:map K dwElp

We discussed this sequence earlier in the chapter, but now you need to use E (as-
sume here, and in the remaining examples, that the e command is mapped to ea).
Remember that the cursor begins on the first of the two words. Unfortunately,
because of the l command, this sequence (and the earlier version) doesn’t work if

Saving Commands | 107

www.it-ebooks.info

http://www.it-ebooks.info/


the two words are at the end of a line: during the sequence, the cursor ends up at
the end of the line, and l cannot move further right. Here’s a better solution:

:map K dwwP

You could also use W instead of w.

3. Save a file and edit the next one in a series:

:map q :w^M:n^M

Notice that you can map keys to ex commands, but be sure to finish each ex com-
mand with a carriage return. This sequence makes it easy to move from one file to
the next and is useful when you’ve opened many short files with one vi command.
Mapping the letter q helps you remember that the sequence is similar to a “quit.”

4. Put troff emboldening codes around a word:

:map v i\fB^[e\fP^[

This sequence assumes that the cursor is at the beginning of the word. First, you
enter insert mode, then you type the code for the bold font. In map commands,
you don’t need to type two backslashes to produce one backslash. Next, you return
to command mode by typing a “quoted” ESC . Finally, you append the closing
troff code at the end of the word, and you return to command mode. Notice that
when we appended to the end of the word, we didn’t need to use ea, since this
sequence is itself mapped to the single letter e. This shows you that map sequences
are allowed to contain other mapped commands. (The ability to use nested map
sequences is controlled by vi’s remap option, which is normally enabled.)

5. Put HTML emboldening codes around a word, even when the cursor is not at the
beginning of the word:

:map V lbi<B>^[e</B>^[

This sequence is similar the previous one; besides using HTML instead of troff,
it uses lb to handle the additional task of positioning the cursor at the beginning
of the word. The cursor might be in the middle of the word, so you want to move
to the beginning with the b command. But if the cursor were already at the begin-
ning of the word, the b command would move the cursor to the previous word
instead. To guard against that case, type an l before moving back with b, so that
the cursor never starts on the first letter of the word. You can define variations of
this sequence by replacing the b with B and the e with Ea. In all cases, though, the
l command prevents this sequence from working if the cursor is at the end of a
line. (You could append a space to get around this.)

6. Repeatedly find and remove parentheses from around a word or phrase: ‖

:map = xf)xn

‖ From the article by Walter Zintz, in Unix World, April 1990.

108 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


This sequence assumes that you first found an open parenthesis, by typing /(
followed by ENTER .

If you choose to remove the parentheses, use the map command: delete the open
parenthesis with x, find the closing one with f), delete it with x, and then repeat
your search for an open parenthesis with n.

If you don’t want to remove the parentheses (for example, if they’re being used
correctly), don’t use the mapped command: press n instead to find the next open
parenthesis.

You could also modify the map sequence in this example to handle matching pairs
of quotes.

7. Place C/C++ comments around an entire line:

:map g I/* ^[A */^[

This sequence inserts /* at the line’s beginning and appends */ at the line’s end.
You could also map a substitute command to do the same thing:

:map g :s;.*;/* & */;^M

Here, you match the entire line (with .*), and when you replay it (with &), you
surround the line with the comment symbols. Note the use of semicolon delimiters,
to avoid having to escape the / in the comment.

8. Safely repeat a long insertion:

:map ^J :set wm=0^M.:set wm=10^M

We mentioned in Chapter 2 that vi occasionally has difficulty repeating long in-
sertions of text when wrapmargin is set. This map command is a useful workaround.
It temporarily turns off the wrapmargin (by setting it to 0), gives the repeat com-
mand, and then restores the wrapmargin. Note that a map sequence can combine
ex and vi commands.

In the previous example, even though ^J is a vi command (it moves the cursor down
a line), this key is safe to map because it’s really the same as the j command. There are
many keys that either perform the same tasks as other keys or are rarely used. However,
you should be familiar with the vi commands before you boldly disable their normal
use by using them in map definitions.

Mapping Keys for Insert Mode
Normally, maps apply only to command mode—after all, in insert mode, keys stand
for themselves and shouldn’t be mapped as commands. However, by adding an excla-
mation mark (!) to the map command, you can force it to override the ordinary meaning
of a key and produce the map in insert mode. This feature is useful when you find
yourself in insert mode but need to escape briefly to command mode, run a command,
and then return to insert mode.

Saving Commands | 109

www.it-ebooks.info

http://www.it-ebooks.info/


For example, suppose you just typed a word but forgot to italicize it (or place quotes
around it, etc.). You can define this map:

:map! + ^[bi<I>^[ea</I>

Now, when you type a + at the end of a word, you will surround the word with HTML
italicization codes. The + won’t show up in the text.

The sequence just shown escapes to command mode (^[), backs up to insert the first
code (bi<I>), escapes again (^[), and moves ahead to append the second code
(ea</I>). Since the map sequence begins and ends in insert mode, you can continue
entering text after marking the word.

Here’s another example. Suppose that you’ve been typing your text, and you realize
that the previous line should have ended with a colon. You can correct that by defining
this map sequence:#

:map! % ^[kA:^[jA

Now, if you type a % anywhere along your current line, you’ll append a colon to the
end of the previous line. This command escapes to command mode, moves up a line,
and appends the colon (^[kA:). The command then escapes again, moves down to the
line you were on, and leaves you in insert mode (^[jA).

Note that we wanted to use uncommon characters (% and +) for the previous map
commands. When a character is mapped for insert mode, you can no longer type that
character as text.

To reinstate a character for normal typing, use the command:

:unmap! x

where x is the character that was previously mapped for insert mode. (Although vi will
expand x on the command line as you type it, making it look like you are unmapping
the expanded text, it will correctly unmap the character.)

Insert-mode mapping is often more appropriate for tying character strings to special
keys that you wouldn’t otherwise use. It is especially useful with programmable func-
tion keys.

Mapping Function Keys
Many terminals have programmable function keys (which are faithfully emulated by
today’s terminal emulators on bitmapped workstations). You can usually set up these
keys to print whatever character or characters you want using a special setup mode on
the terminal. However, keys programmed using a terminal’s setup mode work only on
that terminal; they may also limit the action of programs that want to set up those
function keys themselves.

# From an article by Walter Zintz, in Unix World, April 1990.

110 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


ex allows you to map function keys by number, using the syntax:

:map #1 commands

for function key number 1, and so on. (It can do this because the editor has access to
the entry for that terminal found in either the terminfo or termcap database and knows
the escape sequence normally put out by the function key.)

As with other keys, maps apply by default to command mode, but by using the map!
commands as well, you can define two separate values for a function key—one to be
used in command mode, the other in insert mode. For example, if you are an HTML
user, you might want to put font-switch codes on function keys. For example:

:map #1 i<I>^[
:map! #1 <I>

If you are in command mode, the first function key will enter insert mode, type in the
three characters <I>, and return to command mode. If you are already in insert mode,
the key will simply type the three-character HTML code.

If the sequence contains ^M, which is a carriage return, press CTRL-M . For instance,
in order to have function key 1 available for mapping, the terminal database entry for
your terminal must have a definition of k1, such as:

k1=^A@^M

In turn, the definition:

^A@^M

must be what is output when you press that key.

To see what the function key puts out, use the od (octal dump) command with the -c
option (show each character). You will need to press ENTER  after the function key,
and then CTRL-D  to get od to print the information. For example:

$ od -c
^[[[A
^D
0000000 033   [   [   A  \n
0000005

Here, the function key sent Escape, two left brackets, and an A.

Mapping Other Special Keys
Many keyboards have special keys, such as HOME , END , PAGE UP , and PAGE
DOWN , that duplicate commands in vi. If the terminal’s terminfo or termcap descrip-
tion is complete, vi will be able to recognize these keys. But if it isn’t, you can use the
map command to make them available to vi. These keys generally send an escape se-
quence to the computer—an Escape character followed by a string of one or more other
characters. To trap the Escape, you should press ^V before pressing the special key in

Saving Commands | 111

www.it-ebooks.info

http://www.it-ebooks.info/


the map. For example, to map the HOME  key on the keyboard of an IBM PC to a
reasonable vi equivalent, you might define the following map:

:map CTRL-V  HOME  1G

This appears on your screen as:

:map ^[[H 1G

Similar map commands display as follows:

:map CTRL-V  END  G             displays    :map ^[[Y G
:map CTRL-V  PAGE UP  ^F        displays    :map ^[[V ^F
:map CTRL-V  PAGE DOWN  ^B      displays    :map ^[[U ^B

You’ll probably want to place these maps in your .exrc file. Note that if a special key
generates a long escape sequence (containing multiple nonprinting characters), ^V
quotes only the initial escape character, and the map doesn’t work. You will have to
find the entire escape sequence (perhaps from the terminal manual) and type it in
manually, quoting at the appropriate points, rather than simply pressing ^V and then
the key.

If you use different kinds of terminals (such as both the console of a PC and an
xterm), you cannot expect that mappings like those just presented will always work.
For this reason, Vim provides a portable way to describe such key mappings:

:map <Home> 1G          Enter six characters: < H o m e > (Vim)

Mapping Multiple Input Keys
Mapping multiple keystrokes is not restricted just to function keys. You can also map
sequences of regular keystrokes. This can help make it easier to enter certain kinds of
text, such as XML or HTML.

Here are some :map commands, thanks to Jerry Peek, coauthor of O’Reilly’s Learning
the Unix Operating System, that make it easier to enter XML markup. (The lines be-
ginning with a double quote are comments. This is discussed later in the section
“Comments in ex Scripts” on page 119.)

" ADR: need this
:set noremap
" bold:
map! =b </emphasis>^[F<i<emphasis role="bold">
map =B i<emphasis role="bold">^[
map =b a</emphasis>^[
" Move to end of next tag:
map! =e ^[f>a
map =e f>
" footnote (tacks opening tag directly after cursor in text-input mode):
map! =f <footnote>^M<para>^M</para>^M</footnote>^[kO
" Italics ("emphasis"):
map! =i </emphasis>^[F<i<emphasis>
map =I i<emphasis>^[
map =i a</emphasis>^[

112 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


" paragraphs:
map! =p ^[jo<para>^M</para>^[O
map =P O<para>^[
map =p o</para>^[
" less-than:
map! *l &lt;
...

Using these commands, to enter a footnote you would enter insert mode and type =f.
vi would then insert the opening and closing tags, and leave you in insert mode between
them:

All the world's a stage.<footnote>
<para>
 
</para>
</footnote>

Needless to say, these macros proved quite useful during the development of this book.

@-Functions
Named buffers provide yet another way to create “macros”—complex command se-
quences that you can repeat with only a few keystrokes.

If you type a command line in your text (either a vi sequence or an ex command preceded
by a colon), and then delete it into a named buffer, you can execute the contents of that
buffer with the @ command. For example, open a new line and enter:

 cwgadfly CTRL-V  ESC

This will appear as:

cwgadfly^[

on your screen. Press ESC  again to exit insert mode, then delete the line into buffer g
by typing "gdd. Now whenever you place the cursor at the beginning of a word and type
@g, that word in your text will be changed to gadfly.

Since @ is interpreted as a vi command, a dot (.) will repeat the entire sequence, even
if the buffer contains an ex command. @@ repeats the last @, and u or U can be used to
undo the effect of @.

This is a simple example. @-functions are useful because they can be adapted to very
specific commands. They are especially useful when you are editing between files, be-
cause you can store the commands in their named buffers and access them from any
file you edit. @-functions are also useful in combination with the global replacement
commands discussed in Chapter 6.

Saving Commands | 113

www.it-ebooks.info

http://www.it-ebooks.info/


Executing Buffers from ex
You can also execute text saved in a buffer from ex mode. In this case, you would enter
an ex command, delete it into a named buffer, and then use the @ command from the
ex colon prompt. For example, enter the following text:

ORA publishes great books.
ORA is my favorite publisher.
1,$s/ORA/O'Reilly Media/g

With your cursor on the last line, delete the command into the g buffer: "gdd. Move
your cursor to the first line: kk. Then, execute the buffer from the colon command
line: :@g ENTER . Your screen should now look like this:

O'Reilly Media publishes great books.
O'Reilly Media is my favorite publisher.

Some versions of vi treat * identically to @ when used from the ex command line. In
addition, if the buffer character supplied after the @ or * command is *, the command
will be taken from the default (unnamed) buffer.

Using ex Scripts
Certain ex commands you use only within vi, such as maps, abbreviations, and so on.
If you store these commands in your .exrc file, the commands will automatically be
executed when you invoke vi. Any file that contains commands to execute is called a
script.

The commands in a typical .exrc script are of no use outside vi. However, you can save
other ex commands in a script, and then execute the script on a file or on multiple files.
Mostly you’ll use substitute commands in these external scripts.

For a writer, a useful application of ex scripts is to ensure consistency of terminology
—or even of spelling—across a document set. For example, let’s assume that you’ve
run the Unix spell command on two files and that the command has printed out the
following list of misspellings:

$ spell sect1 sect2
chmod
ditroff
myfile
thier
writeable

As is often the case, spell has flagged a few technical terms and special cases it doesn’t
recognize, but it has also identified two genuine spelling errors.

Because we checked two files at once, we don’t know which files the errors occurred
in or where they are in the files. Although there are ways to find this out, and the job
wouldn’t be too hard for only two errors in two files, you can easily imagine how

114 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


time-consuming the job could grow to be for a poor speller or for a typist proofing
many files at once.

To make the job easier, you could write an ex script containing the following
commands:

%s/thier/their/g
%s/writeable/writable/g
wq

Assume you’ve saved these lines in a file named exscript. The script could be executed
from within vi with the command:

:so exscript

or the script can be applied to a file right from the command line. Then you could edit
the files sect1 and sect2 as follows:

$ ex -s sect1 < exscript
$ ex -s sect2 < exscript

The -s following the invocation of ex is the POSIX way to tell the editor to suppress
the normal terminal messages.*

If the script were longer than the one in our simple example, we would already have
saved a fair amount of time. However, you might wonder if there isn’t some way to
avoid repeating the process for each file to be edited. Sure enough, we can write a shell
script that includes—but generalizes—the invocation of ex, so that it can be used on
any number of files.

Looping in a Shell Script
You may know that the shell is a programming language as well as a command-line
interpreter. To invoke ex on a number of files, we use a simple type of shell script
command called the for loop. A for loop allows you to apply a sequence of commands
for each argument given to the script. (The for loop is probably the single most useful
piece of shell programming for beginners. You’ll want to remember it even if you don’t
write any other shell programs.)

Here’s the syntax of a for loop:

for variable in list
do
    command(s)
done

For example:

for file in $*
do

* Traditionally, ex used a single minus sign for this purpose. Typically, for backward compatibility, both
versions are accepted.

Using ex Scripts | 115

www.it-ebooks.info

http://www.it-ebooks.info/


    ex - $file < exscript
done

(The command doesn’t need to be indented; we indented it for clarity.) After we create
this shell script, we save it in a file called correct and make it executable with the
chmod command. (If you aren’t familiar with the chmod command and the procedures
for adding a command to your Unix search path, see Learning the Unix Operating
System, published by O’Reilly.) Now type:

$ correct sect1 sect2

The for loop in correct will assign each argument (each file in the list specified by $*,
which stands for all arguments) to the variable file and execute the ex script on the
contents of that variable.

It may be easier to grasp how the for loop works with an example whose output is more
visible. Let’s look at a script to rename files:

for file in $*
do
    mv $file $file.x
done

Assuming this script is in an executable file called move, here’s what we can do:

$ ls
ch01 ch02 ch03 move
$ move ch??                  Just the chapter files
$ ls                         Check the results
ch01.x ch02.x ch03.x move

With creativity, you could rewrite the script to rename the files more specifically:

for nn in $*
do
    mv ch$nn sect$nn
done

With the script written this way, you’d specify numbers instead of filenames on the
command line:

$ ls
ch01 ch02 ch03 move
$ move 01 02 03
$ ls
sect01 sect02 sect03 move

The for loop need not take $* (all arguments) as the list of values to be substituted.
You can specify an explicit list as well. For example:

for variable in a b c d

assigns variable to a, b, c, and d in turn. Or you can substitute the output of a command.
For example:

for variable in `grep -l "Alcuin" *`

116 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


assigns variable in turn to the name of each file in which grep finds the string Alcuin.
(grep -l prints the filenames whose contents match the pattern, without printing the
actual matching lines.)

If no list is specified:

for variable

the variable is assigned to each command-line argument in turn, much as it was in our
initial example. This is actually not equivalent to:

for variable in $*

but to:

for variable in "$@"

which has a slightly different meaning. The symbol $* expands to $1, $2, $3, etc., but
the four-character sequence "$@" expands to "$1", "$2", "$3", etc. Quotation marks
prevent further interpretation of special characters.

Let’s return to our main point and our original script:

for file in $*
do
    ex - $file < exscript
done

It may seem a little inelegant to have to use two scripts—the shell script and the ex
script. And in fact, the shell does provide a way to include an editing script inside a
shell script.

Here Documents
In a shell script, the operator << means to take the following lines, up to a specified
string, as input to a command. (This is often called a here document.) Using this syntax,
we could include our editing commands in correct like this:

for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done

The string end-of-script is entirely arbitrary—it just needs to be a string that won’t
otherwise appear in the input and can be used by the shell to recognize when the here
document is finished. It also must be placed at the start of the line. By convention, many
users specify the end of a here document with the string EOF, or E_O_F, to indicate the
end of the file.

Using ex Scripts | 117

www.it-ebooks.info

http://www.it-ebooks.info/


There are advantages and disadvantages to each approach shown. If you want to make
a one-time series of edits and don’t mind rewriting the script each time, the here docu-
ment provides an effective way to do the job.

However, it’s more flexible to write the editing commands in a separate file from the
shell script. For example, you could establish the convention that you will always put
editing commands in a file called exscript. Then you only need to write the correct
script once. You can store it away in your personal “tools” directory (which you’ve
added to your search path) and use it whenever you like.

Sorting Text Blocks: A Sample ex Script
Suppose you want to alphabetize a file of troff-encoded glossary definitions. Each term
begins with an .IP macro. In addition, each entry is surrounded by the .KS/.KE macro
pair. (This ensures that the term and its definition will print as a block and will not be
split across a new page.) The glossary file looks something like this:

.KS

.IP "TTY_ARGV" 2n
The command, specified as an argument vector,
that the TTY subwindow executes.
.KE
.KS
.IP "ICON_IMAGE" 2n
Sets or gets the remote image for icon's image.
.KE
.KS
.IP "XV_LABEL" 2n
Specifies a frame's header or an icon's label.
.KE
.KS
.IP "SERVER_SYNC" 2n
Synchronizes with the server once.
Does not set synchronous mode.
.KE

You can alphabetize a file by running the lines through the Unix sort command, but
you don’t really want to sort every line. You want to sort only the glossary terms, moving
each definition—untouched—along with its corresponding term. As it turns out, you
can treat each text block as a unit by joining the block into one line. Here’s the first
version of your ex script:

g/^\.KS/,/^\.KE/j
%!sort

Each glossary entry is found between a .KS and .KE macro. j is the ex command to join
a line (the equivalent in vi is J). So, the first command joins every glossary entry into
one “line.” The second command then sorts the file, producing lines like this:

.KS .IP "ICON_IMAGE" 2n Sets or gets ... image.   .KE

.KS .IP "SERVER_SYNC" 2n Synchronizes with ... mode.   .KE

118 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


.KS .IP "TTY_ARGV" 2n The command, ... executes.   .KE

.KS .IP "XV_LABEL" 2n Specifies a ... icon's label.   .KE

The lines are now sorted by glossary entry; unfortunately, each line also has macros
and text mixed in (we’ve used ellipses [...] to show omitted text). Somehow, you need
to insert newlines to “un-join” the lines. You can do this by modifying your ex script:
mark the joining points of the text blocks before you join them, and then replace the
markers with newlines. Here’s the expanded ex script:

g/^\.KS/,/^\.KE/-1s/$/@@/
g/^\.KS/,/^\.KE/j
%!sort
%s/@@ /^M/g

The first three commands produce lines like this:

.KS@@ .IP "ICON_IMAGE" 2nn@@ Sets or gets ... image. @@ .KE

.KS@@ .IP "SERVER_SYNC" 2nn@@ Synchronizes with ... mode. @@ .KE

.KS@@ .IP "TTY_ARGV" 2nn@@ The ... vector, @@ that ... .@@ .KE

.KS@@ .IP "XV_LABEL" 2nn@@ Specifies a ... icon's label. @@ .KE

Note the extra space following the @@. The spaces result from the j command, because
it converts each newline into a space.

The first command marks the original line breaks with @@. You don’t need to mark the
end of the block (after the .KE), so the first command uses a -1 to move back up one
line at the end of each block. The fourth command restores the line breaks by replacing
the markers (plus the extra space) with newlines. Now your file is sorted by blocks.

Comments in ex Scripts
You may want to reuse such a script, adapting it to a new situation. With a complex
script like this, it is wise to add comments so that it’s easier for someone else (or even
yourself!) to reconstruct how it works. In ex scripts, anything following a double quote
is ignored during execution, so a double quote can mark the beginning of a comment.
Comments can go on their own line. They can also go at the end of any command that
doesn’t interpret a quote as part of the command. (For example, a quote has meaning
to map commands and shell escapes, so you can’t end such lines with a comment.)

Besides using comments, you can specify a command by its full name, something that
would ordinarily be too time-consuming from within vi. Finally, if you add spaces, the
ex script shown previously becomes this more readable one:

" Mark lines between each KS/KE block
global /^\.KS/,/^\.KE/-1 s /$/@@/
" Now join the blocks into one line
global /^\.KS/,/^\.KE/ join
" Sort each block--now really one line each
%!sort
" Restore the joined lines to original blocks
% s /@@ /^M/g

Using ex Scripts | 119

www.it-ebooks.info

http://www.it-ebooks.info/


Surprisingly, the substitute command does not work in ex, even though the full names
for the other commands do.

Beyond ex
If this discussion has whetted your appetite for even more editing power, you should
be aware that Unix provides editors even more powerful than ex: the sed stream editor
and the awk data manipulation language. There is also the extremely popular perl pro-
gramming language. For information on these programs, see the O’Reilly books sed &
awk, Effective awk Programming, Learning Perl, and Programming Perl.

Editing Program Source Code
All of the features discussed so far are of interest whether you are editing regular text
or program source code. However, there are a number of additional features that are
of interest chiefly to programmers. These include indentation control, searching for the
beginning and end of procedures, and using ctags.

The following discussion is adapted from documentation provided by Mortice Kern
Systems with their excellent implementation of vi for DOS and Windows-based sys-
tems, available as a part of the MKS Toolkit or separately as MKS Vi. It is reprinted by
permission of Mortice Kern Systems.

Indentation Control
The source code for a program differs from ordinary text in a number of ways. One of
the most important of these is the way in which source code uses indentation. Inden-
tation shows the logical structure of the program: the way in which statements are
grouped into blocks. vi provides automatic indentation control. To use it, issue the
command:

:set autoindent

Now, when you indent a line with spaces or tabs, the following lines will automatically
be indented by the same amount. When you press ENTER  after typing the first in-
dented line, the cursor goes to the next line and automatically indents the same distance
as the previous line.

As a programmer, you will find this saves you quite a bit of work getting the indentation
right, especially when you have several levels of indentation.

When you are entering code with autoindent enabled, typing CTRL-T  at the start of
a line gives you another level of indentation, and typing CTRL-D  takes one away.

We should point out that CTRL-T  and CTRL-D  are typed while you are in insert
mode, unlike most other commands, which are typed in command mode.

120 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


There are two additional variants of the CTRL-D  command:†

^ ^D
When you type ^ ^D ( ^  CTRL-D ), vi shifts the cursor back to the beginning of
the line, but only for the current line. The next line you enter will start at the current
autoindent level. This is particularly useful for entering C preprocessor commands
while typing in C/C++ source code.

0 ^D
When you type 0 ^D, vi shifts the cursor back to the beginning of the line. In
addition, the current autoindent level is reset to zero; the next line you enter will
not be autoindented.‡

Try using the autoindent option when you are entering source code. It simplifies the
job of getting indentation correct. It can even sometimes help you avoid bugs—e.g., in
C source code, where you usually need one closing curly brace (}) for every level of
indentation you go backward.

The << and >> commands are also helpful when indenting source code. By default, >>
shifts a line right eight spaces (i.e., adds eight spaces of indentation) and << shifts a line
left eight spaces. For example, move the cursor to the beginning of a line and press >
twice (>>). You will see the line move right. If you now press <  twice (<<), the line will
move back again.

You can shift a number of lines by typing the number followed by >> or <<. For example,
move the cursor to the first line of a good-sized paragraph and type 5>>. You will shift
the first five lines in the paragraph.

The default shift is eight spaces (right or left). This default can be changed with a
command such as:

:set shiftwidth=4

You will find it convenient to have a shiftwidth that is the same size as the width
between tab stops.

vi attempts to be smart when doing indenting. Usually, when you see text indented by
eight spaces at a time, vi will actually insert tab characters into the file, since tabs usually
expand to eight spaces. This is the Unix default; it is most noticeable when you type a
tab during normal input and when files are sent to a printer—Unix expands them with
a tab stop of eight spaces.

If you wish, you can change how vi represents tabs on your screen, by changing the
tabstop option. For example, if you have something that is deeply indented, you might

† These do not work in elvis.

‡ The nvi 1.79 documentation has these two commands switched, but the program actually behaves as
described here.

Editing Program Source Code | 121

www.it-ebooks.info

http://www.it-ebooks.info/


wish to have use a tab stop setting of every four characters, so that the lines will not
wrap. The following command will make this change:

:set tabstop=4

Changing your tab stops is not recommended. Although vi will display
the file using an arbitrary tab stop setting, the tab characters in your files
will still be expanded using an eight-character tab stop by every other
Unix program.

Even worse: mixing tabs, spaces, and unusal tab stops will make your
file completely unreadable when viewed outside the editor, with a pager
such as more, or when printed. Eight-character tab stops are one of the
facts of life on Unix, and you should just get used to them.

Sometimes indentation won’t work the way you expect, because what you believe to
be a tab character is actually one or more spaces. Normally, your screen displays both
a tab and a space as whitespace, making the two indistinguishable. You can, however,
issue the command:

:set list

This alters your display so that a tab appears as the control character ̂ I and an end-of-
line appears as a $. This way, you can spot a true space, and you can see extra spaces
at the end of a line. A temporary equivalent is the :l command. For example, the
command:

:5,20 l

displays lines 5 through 20, showing tab characters and end-of-line characters.

A Special Search Command
The characters (, [, {, and < can all be called opening brackets. When the cursor is
resting on one of these characters, pressing the % key moves the cursor from the opening
bracket forward to the corresponding closing bracket—), ], }, or >—keeping in mind
the usual rules for nesting brackets.§ For example, if you were to move the cursor to
the first ( in:

if ( cos(a[i]) == sin(b[i]+c[i]) )
{
    printf("cos and sin equal!\n");
}

and press %, you would see that the cursor jumps to the parenthesis at the end of the
line. This is the closing parenthesis that matches the opening one.

§ Of the versions tested, only nvi supported matching < and > with %. vile lets you set an option with the sets
of pairs of characters that match for %.

122 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


Similarly, if the cursor is on one of the closing bracket characters, pressing % will move
the cursor backward to the corresponding opening bracket character. For example,
move the cursor to the closing brace after the printf line just shown and press %.

vi is even smart enough to find a bracket character for you. If the cursor is not on a
bracket character, when you press %, vi will search forward on the current line to the
first open or close bracket character it finds, and then it will move to the matching
bracket! For instance, with the cursor on the > in the first line of the example just shown,
% will find the open parenthesis and then move to the close parenthesis.

Not only does this search character help you move forward and backward through a
program in long jumps, it lets you check the nesting of brackets and parentheses in
source code. For example, if you put the cursor on the first { at the beginning of a C
function, pressing % should move you to the } that (you think) ends the function. If it’s
the wrong one, something has gone wrong somewhere. If there is no matching } in the
file, vi will beep at you.

Another technique for finding matching brackets is to turn on the following option:

:set showmatch

Unlike %, setting showmatch (or its abbreviation sm) helps you while you’re in insert
mode. When you type a ) or a },‖ the cursor will briefly move back to the matching ( or
{ before returning to your current position. If the match doesn’t exist, the terminal
beeps. If the match is merely off-screen, vi silently keeps going. Vim 7.0 and later can
highlight the matching parenthesis or brace, using the matchparen plugin, which is
loaded by default.

Using Tags
The source code for a large C or C++ program will usually be spread over several files.
Sometimes, it is difficult to keep track of which file contains which function definitions.
To simplify matters, a Unix command called ctags can be used together with
the :tag command of vi. 

Unix versions of ctags handle the C language and often Pascal and For-
tran 77. Sometimes they even handle assembly language. Almost uni-
versally, however, they do not handle C++. Other versions are available
that can generate tags files for C++ and for other languages and file
types. For more information, see “Enhanced Tags” on page 129.

‖ In elvis, Vim, and vile, showmatch also shows you matching square brackets ([ and ]).

Editing Program Source Code | 123

www.it-ebooks.info

http://www.it-ebooks.info/


You issue the ctags command at the Unix command line. Its purpose is to create an
information file that vi can use later to determine which files define which functions.
By default, this file is called tags. From within vi, a command of the form:

:!ctags file.c

creates a file named tags in your current directory that contains information on the
functions defined in file.c. A command such as:

:!ctags *.c

creates a tags file describing all the C source files in the directory.

Now suppose your tags file contains information on all the source files that make up
a C program. Also suppose that you want to look at or edit a function in the program,
but you do not know where the function is. From within vi, the command:

:tag name

looks at the tags file to find out which file contains the definition of the function
name. It then reads in the file and positions the cursor on the line where the name is
defined. In this way, you don’t have to know which file you have to edit; you only have
to decide which function you want to edit.

You can use the tag facility from vi’s command mode as well. Place the cursor on the
identifier you wish to look up, and then type ^]. vi will perform the tag lookup and
move to the file that defines the identifier. Be careful where you place the cursor; vi
uses the “word” under the cursor starting at the current cursor position, not the entire
word containing the cursor.

If you try to use the :tag command to read in a new file and you haven’t
saved your current text since the last time you changed it, vi will not let
you go to the new file. You must either write out your current file with
the :w command and then issue :tag, or else type:

:tag! name

to override vi’s reluctance to discard edits.

The Solaris version of vi actually supports tag stacks. It appears, however, to be com-
pletely undocumented in the Solaris manpages. Because many, if not most, versions of
Unix vi don’t do tag stacking, in this book we have moved the discussion of this feature
to “Tag Stacks” on page 131 where tag stacking is introduced.

124 | Chapter 7: Advanced Editing

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 8

Introduction to the vi Clones

And These Are My Brothers, Darrell, Darrell, and Darrell
There are a number of freely available “clones” of the vi editor. Appendix D provides
a pointer to a web site that lists all known vi clones, and Part II covers Vim in great
detail. Part III covers an additional three of the more popular clones. They are:  

• Version 1.79 of Keith Bostic’s nvi (Chapter 16)

• Version 2.2.0 of Steve Kirkendall’s elvis (Chapter 17)

• Version 9.6.4 of vile, by Kevin Buettner, Tom Dickey, Paul Fox, and Clark Morgan
(Chapter 18)

All the clones were written either because the source code for vi was not freely available
—making it impossible to port vi to a non-Unix environment or to study the code—
or because Unix vi (or another clone!) did not provide desired functionality. For ex-
ample, Unix vi often has limits on the maximum length of a line, and it cannot edit
binary files. (The chapters on the various programs present more information about
each one’s history.)

Each program provides a large number of extensions to Unix vi; often, several of the
clones provide the same extensions, although usually not in an identical way. Instead
of repeating the treatment of each common feature in each program’s chapter, we have
centralized the discussion here. You can think of this chapter as presenting “what the
clones do,” with each clone’s own chapter presenting “how the clone does it.”

The order in which topics are presented in this chapter is used in an expanded fashion
in Part II on Vim, and in a much more compact fashion in the chapters in Part III. This
chapter covers the following:

Multiwindow editing
This is the ability to split the (terminal) screen into multiple “windows,” and/or
the ability to use multiple windows within a GUI environment. You can edit a
different file in each window or have several views into the same file. This is perhaps
the single most important extension over regular vi.

125

www.it-ebooks.info

http://www.it-ebooks.info/


GUI interfaces
All of the clones except nvi can be compiled to support an X Window interface. If
you have a system running X, use of the GUI version may be preferable to splitting
the screen of an xterm (or other terminal emulator); the GUI versions generally
provide such nice features as scrollbars and multiple fonts. The native GUIs of
other operating systems may also be supported.

Extended regular expressions
All of the clones make it possible to match text using regular expressions that are
similar or identical to those provided by the Unix egrep command.

Enhanced tags
As described earlier in “Using Tags” on page 123, you can use the ctags program
to build up a searchable database of your files. The clones make it possible to
“stack” tags by saving your current location when you do a tag search. You can
then return to that location. Multiple locations can be saved in a “last in, first out”
(LIFO) order, producing a stack of locations.

Several of the vi clone authors and the author of at least one ctags clone have gotten
together to define a standard form for an enhanced version of the ctags format. In
particular, it is now easier to use the tag functionality with programs written in
C++, which allows overloaded function names.

Improved editing facilities
All of the clones provide the ability to edit the ex command line, an “infinite undo”
capability, arbitrary length lines and 8-bit data, incremental searching, an option
to scroll the screen left to right for long lines instead of wrapping long lines, and
mode indicators, as well as other features.

Programming assistance
Several of the editors provide features that allow you to stay within the editor during
the typical “edit-compile-debug” cycle of software development.

Syntax highlighting
In elvis, Vim, and vile, you can arrange to display different parts of a file in dif-
ferent colors and fonts. This is particularly useful for editing program source code.

Multiwindow Editing
Perhaps the single most important feature that the clones offer over standard vi is the
ability to edit files in multiple “windows.” This makes it possible to easily work on
more than one file at the same time, and to “cut and paste” text from one file to another
via yanking and putting.

In the clones, you need not split the screen to yank and put between
files; only the original vi discards the cut buffers when switching
between files.

126 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


There are two fundamental concepts underlying each editor’s multiwindow imple-
mentation: buffers and windows.

A buffer holds text to be edited. The text may come from a file, or it may be brand new
text to be eventually written to a file. Any given file has only one buffer associated with
it.

A window provides a view into a buffer, allowing you to see and modify the text in the
buffer. There may be multiple windows associated with the same buffer. Changes made
to the buffer in one window are reflected in any other windows open on the same buffer.
A buffer may also have no windows associated with it. In that case, you can’t do a whole
lot with the buffer, although you can open a window on it later. Closing the last window
open on a buffer effectively “hides” the file. If the buffer has been modified but not
written to disk, the editor may or may not let you close the last window that’s open on
it.

When you create a new window, the editor splits the current screen. For most of the
editors, this new window shows another view on the file you’re currently editing. You
then switch to the window where you wish to edit the next file, and instruct the editor
to start editing the file there. Each editor provides vi and ex commands to switch back
and forth between windows, as well as the ability to change the window size and hide
and restore windows.

Chapter 11 is devoted to multiwindow editing in Vim. In each of the other editors’
chapters in Part III, we show a sample split screen (editing the same two files), and
describe how to split the screen and move between windows.

GUI Interfaces
elvis, Vim, and vile provide graphical user interface (GUI) versions that can take
advantage of a bitmapped display and mouse. Besides supporting X Windows under
Unix, support for Microsoft Windows or other windowing systems may also be avail-
able. Table 8-1 summarizes the available GUIs for the different clones.

Table 8-1. Available GUIs

Editor Terminal X11 Microsoft Windows OS/2 BeOS Macintosh Amiga QNX OpenVMS

Vim • • • • • • •   

nvi •         

elvis • • • •      

vile • • • • •   • •

GUI Interfaces | 127

www.it-ebooks.info

http://www.it-ebooks.info/


Extended Regular Expressions
The metacharacters available in vi’s search and substitution regular expressions are
described back in Chapter 6 in the section “Metacharacters Used in Search Patterns”
on page 74. Each of the clones provides some form of extended regular expressions,
which are either optional or always available. Typically, these are the same (or almost
the same) as those provided by egrep. Unfortunately, each clone’s extended flavor is
slightly different from the others’.

To give you a feel for what extended regular expressions can do, we present them in
the context of nvi. The section “Extended Regular Expressions” on page 169 describes
Vim’s extended regular expressions, and each clone’s chapter in Part III describes that
editor’s extended syntax, without repeating the examples.

nvi’s extended regular expressions are the Extended Regular Expressions (EREs) as
defined by the POSIX standard. To enable this feature, use set extended from either
your .nexrc file or from the ex colon prompt.

Besides the standard metacharacters described in Chapter 6 and the POSIX bracket
expressions mentioned in “POSIX Bracket Expressions” on page 77 in the same chap-
ter, the following metacharacters are available:

|
Indicates alternation. For example, a|b matches either a or b. However, this con-
struct is not limited to single characters: house|home matches either of the strings
house or home.

(...)
Used for grouping, to allow the application of additional regular expression oper-
ators. For example, house|home can be shortened (if not simplified) to ho(use|me).
The * operator can be applied to text in parentheses: (house|home)* matches home,
homehouse, househomehousehouse, and so on.

When extended is set, text grouped with parentheses acts like text grouped in
\(...\) in regular vi: the actual text matched can be retrieved in the replacement
part of a substitute command with \1, \2, etc. In this case, \( represents a literal
left parenthesis.

+
Matches one or more of the preceding regular expressions. This is either a single
character or a group of characters enclosed in parentheses. Note the difference
between + and *. The * is allowed to match nothing, but with + there must be at
least one match. For example, ho(use|me)* matches ho as well as home and
house, but ho(use|me)+ will not match ho.

?
Matches zero or one occurrence of the preceding regular expression. This indicates
“optional” text that is either present or not present. For example, free?d will match
either fred or freed, but nothing else.

128 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


{...}
Defines an interval expression. Interval expressions describe counted numbers of
repetitions. In the following descriptions, n and m represent integer constants:

{n}
Matches exactly n repetitions of the previous regular expression. For example,
(home|house){2} matches homehome, homehouse, househome, and house-
house, but nothing else.

{n,}
Matches n or more repetitions of the previous regular expression. Think of it
as “as least n” repetitions.

{n,m}
Matches n to m repetitions. The bounding is important, since it controls how
much text would be replaced during a substitute command.*

When extended is not set, nvi provides the same functionality with \{ and \}.

Enhanced Tags
The “Exuberant ctags” program is a ctags clone that is considerably more capable than
Unix ctags. It produces an extended tags file format that makes the tag searching and
matching process more flexible and powerful. We describe the Exuberant version first,
since it is supported by most of the vi clones.

This section also describes tag stacks: the ability to save multiple locations visited with
the :tag or ^] commands. All of the clones support tag stacking.

Exuberant ctags
The Exuberant ctags program was written  by Darren Hiebert, and, as of this writing,
the current version is 5.7. Its home page is http://ctags.sourceforget.net/. The following
list of the program’s features is adapted from the README file in the ctags distribution:

• It is capable of generating tags for all types of C and C++ language tags, including
class names, macro definitions, enum names, enumerators (values inside an enu-
meration), function (method) definitions, function (method) prototypes/declara-
tions, structure members and class data members, struct names, typedefs, union
names, and variables. (Whew!)

• It supports both C and C++ code.

• Twenty-nine other languages are also supported, including C# and Java.

* The *, +, and ? operators can be reduced to {0,}, {1,}, and {0,1} respectively, but the former are much more
convenient to use. Also, interval expressions were developed later in the history of Unix regular expressions.

Enhanced Tags | 129

www.it-ebooks.info

http://ctags.sourceforget.net/
http://www.it-ebooks.info/


• It is very robust in parsing code and is far less easily fooled by code containing
#if preprocessor conditional constructs.

• It can be used to print out a human-readable list of selected objects found in source
files.

• It supports generation of GNU Emacs-style tag files (etags).

• It works on Amiga, Cray, MS-DOS, Macintosh, OS/2, QDOS, QNX, RISC OS,
Unix, VMS, and Windows 95 through XP. Some precompiled binaries are available
on the web site.

Exuberant ctags produces tags files in the form described next.

The New tags Format
Traditionally, a tags file has three tab-separated fields: the tag name (typically an iden-
tifier); the source file containing the tag; and an indication of where to find the identifier.
This indication is either a simple line number or a nomagic search pattern enclosed either
in slashes or question marks. Furthermore, the tags file is always sorted.

This is the format generated by the Unix ctags program. In fact, many versions of vi
allowed any command in the search pattern field (a rather gaping security hole). Fur-
thermore, due to an undocumented implementation quirk, if the line ended with a
semicolon and then a double quote (;"), anything following those two characters would
be ignored. (The double quote starts a comment, as it does in .exrc files.)

The new format is backward compatible with the traditional one. The first three fields
are the same: tag, filename, and search pattern. Exuberant ctags only generates search
patterns, not arbitrary commands. Extended attributes are placed after a separat-
ing ;". Each attribute is separated from the next by a tab character, and consists of two
colon-separated subfields. The first subfield is a keyword describing the attribute; the
second is the actual value. Table 8-2 lists the supported keywords.

Table 8-2. Extended ctags keywords

Keyword Meaning

kind The value is a single letter that indicates the tag’s lexical type. It can be f for a function, v for
a variable, and so on. Since the default attribute name is kind, a solitary letter can denote the
tag’s type (e.g., f for a function).

file For tags that are “static,” i.e., local to the file. The value should be the name of the file.

If the value is given as an empty string (just file:), it is understood to be the same as the
filename field; this special case was added partly for the sake of compactness, and partly to
provide an easy way to handle tags files that aren’t in the current directory. The value of the
filename field is always relative to the directory in which the tags file itself resides.

function For local tags. The value is the name of function in which they’re defined.

struct For fields in a struct. The value is the name of the structure. 

enum For values in an enum data type. The value is the name of the enum type.

class For C++ member functions and variables. The value is the name of the class.

130 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


Keyword Meaning

scope Intended mostly for C++ class member functions. It will usually be private for private members
or omitted for public members, so users can restrict tag searches to only public members.

arity For functions. Defines the number of arguments.

If the field does not contain a colon, it is assumed to be of type kind. Here are some
examples:

ARRAYMAXED      awk.h    427;"   d
AVG_CHAIN_MAX   array.c   38;"   d     file:
array.c         array.c    1;"   F

ARRAYMAXED is a C #define macro defined in awk.h. AVG_CHAIN_MAX is also a C macro, but
it is used only in array.c. The third line is a bit different: it is a tag for the actual source
file! This is generated with the -i F option to Exuberant ctags, and allows you to give
the command :tag array.c. More usefully, you can put the cursor over a filename and
use the ^] command to go to that file (for example, if you’re editing a Makefile and
wish to go to a particular source file).

Within the value part of each attribute, the backslash, tab, carriage return, and newline
characters should be encoded as \\, \t, \r, and \n, respectively.

Extended tags files may have some number of initial tags that begin with !_TAG_. These
tags usually sort to the front of the file and are useful for identifying which program
created the file. Here is what Exuberant ctags generates:

!_TAG_FILE_FORMAT       2   /extended format; --format=1 will not append ;" to lines/
!_TAG_FILE_SORTED       1   /0=unsorted, 1=sorted, 2=foldcase/
!_TAG_PROGRAM_AUTHOR    Darren Hiebert  /dhiebert@users.sourceforge.net/
!_TAG_PROGRAM_NAME      Exuberant Ctags //
!_TAG_PROGRAM_URL       http://ctags.sourceforge.net    /official site/
!_TAG_PROGRAM_VERSION   5.7     //

Editors can take advantage of these special tags to implement special features. For
example, Vim pays attention to the !_TAG_FILE_SORTED tag and will use a binary search
to search the tags file instead of a linear search if the file is indeed sorted.

If you use tags files, we recommend that you get and install Exuberant ctags.

Tag Stacks
The ex command :tag and the vi mode ̂ ] command provide a limited means of finding
identifiers, based on the information provided in a tags file. Each of the clones extends
this ability by maintaining a stack of tag locations. Each time you issue the ex com-
mand :tag, or use the vi mode ̂ ] command, the editor saves the current location before
searching for the specified tag. You may then return to a saved location using (usually)
the vi command ^T or an ex command.

Enhanced Tags | 131

www.it-ebooks.info

http://www.it-ebooks.info/


Solaris vi tag stacking and an example are presented next. Vim’s tag stacking is de-
scribed in the section “Tag Stacking” on page 268. The ways the other clones handle
tag stacking is described in each editor’s respective chapter in Part III.

Solaris vi

Surprisingly enough, the Solaris version of vi supports tag stacking. Perhaps not so
surprisingly, this feature is completely undocumented in the Solaris ex(1) and vi(1)
manual pages. For completeness, we summarize Solaris vi tag stacking in Tables 8-3,
8-4, and 8-5. Tag stacking in Solaris vi is quite simple.†

Table 8-3. Solaris vi tag commands

Command Function

ta[g][!] tagstring Edit the file containing tagstring as defined in the tags file. The ! forces vi to switch
to the new file if the current buffer has been modified but not saved.

po[p][!] Pop the tag stack by one element.

Table 8-4. Solaris vi command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file, and move to
that location. If tag stacking is enabled, the current location is automatically pushed
onto the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one element.

Table 8-5. Solaris vi options for tag management

Option Function

taglength, tl Controls the number of significant characters in a tag that is to be looked up. The
default value of zero indicates that all characters are significant.

tags, tagpath The value is a list of  filenames in which to look for tags. The default value is "tags /
usr/lib/tags".

tagstack When set to true, vi stacks each location on the tag stack. Use :set notagstack to
disable tag stacking.

Exuberant ctags and Vim

To give you a feel for using tag stacks, we present a short example that uses Exuberant
ctags and Vim.

Suppose you are working with a program that uses the GNU getopt_long function, and
you need to understand more about it.

GNU getopt consists of three files: getopt.h, getopt.c, and getopt1.c.

† This information was discovered based on experimentation. YMMV (your mileage may vary).

132 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


First, you create the tags file, and then you start by editing the main program, found
in main.c:

$ ctags *.[ch]
$ ls
Makefile   getopt.c   getopt.h   getopt1.c   main.c   tags
$ vim main.c

Keystrokes Results

/getopt_  /* option processing. ready, set, go! */
 for (optopt = 0, old_optind = 1;
      (c = getopt_long(argc, argv, optlist, optab, NULL)) != EOF;
      optopt = 0, old_optind = optind) {
        if (do_posix)
                 opterr = TRUE;

 Edit main.c and move to the call to getopt_long.

^]  int
 getopt_long (int argc, char *const *argv, const char *options,
              const struct option *long_options, int *opt_index)
 {               
   return _getopt_internal (argc, argv, options, long_options, opt_index, 0);
 }

 "getopt1.c" 192L, 4781C

 Do a tag lookup on getopt_long. Vim moves to getopt1.c, placing the cursor on the definition
of getopt_long.

It turns out that getopt_long is a “wrapper” function for _getopt_internal. You place
the cursor on _getopt_internal and do another tag search.

Keystrokes Results

3jf_ ^]  int
 _getopt_internal (int argc, char *const *argv, const char *optstring,
                   const struct option *longopts, int *longind, int long_only)
 {
   int result;
 
   getopt_data.optind = optind;
   getopt_data.opterr = opterr;
 
   result = _getopt_internal_r (argc, argv, optstring, longopts, 
                                longind, long_only, &getopt_data);
 
   optind = getopt_data.optind;
 "getopt.c" 1225L, 33298C

 You have now moved to getopt.c. To find out more about struct option, move the cursor to
option and do another tag search.

jfo; ^]     one).  For long options that have a zero `flag' field, `getopt'
    returns the contents of the `val' field.  */

 struct option
 {
   const char *name;
   /* has_arg can't be an enum because some compilers complain about
      type mismatches in all the code that assumes it is an int.  */
   int has_arg;
   int *flag;
   int val;

Enhanced Tags | 133

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results
 };
                                
 /* Names for the values of the `has_arg' field of `struct option'.  */
   
 "getopt.h" 177L, 6130C

 The editor moves to the definition of struct option in getopt.h. You may now look over the
comments that explain how it’s used.

:tags   # TO tag         FROM line  in file/text
  1  1 getopt_long       310  main.c
  2  1 _getopt_internal   67  getopt1.c
  3  1 option           1129  getopt.c

 The :tags command in Vim displays the tag stack.

Typing ^T three times would move you back to main.c, where you started. The tag
facilities make it easy to move around as you edit source code.

Improved Facilities
All of the clones provide additional features that make simple text editing easier and
more powerful:

Editing the ex command line
The ability to edit ex mode commands as you type them, possibly including a saved
history of ex commands. Also, the ability to complete filenames and possibly other
things, such as commands and options.

No line length limit
The ability to edit lines of essentially arbitrary length. Also, the ability to edit files
containing any 8-bit character.

Infinite undo
The ability to successively undo all of the changes you’ve made to a file.

Incremental searching
The ability to search for text while you are typing the search pattern.

Left/right scrolling
The ability to let long lines trail off the edge of the screen instead of wrapping.

Visual mode
The ability to select arbitrary contiguous chunks of texts upon which some oper-
ation will be done.

Mode indicators
A visible indication of insert mode versus command mode, as well as indicators of
the current line and column.

134 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


Command-Line History and Completion
Users of the csh, tcsh, ksh, zsh, and bash shells have known for years that being able to
recall previous commands, edit them slightly, and resubmit them makes them more
productive.

This is no less true for editor users than it is for shell users; unfortunately, Unix vi does
not have any facility to save and recall ex commands.

This lack is remedied in each of the clones. Although each one provides a different way
of saving and recalling the command history, each one’s mechanism is usable and
useful.

In addition to a command history, all of the editors can do some kind of completion.
This is where you type the beginning of, for example, a filename. You then type a special
character (such as tab), and the editor completes the filename for you. All of the editors
can do filename completion, and some of them can complete other things as well.
Details for Vim are found in the section “Keyword and Dictionary Word Completion”
on page 259. Details for the other editors are provided in each editor’s chapter in
Part III.

Arbitrary Length Lines and Binary Data
All the clones can handle lines of any length.‡ Historic versions of vi often had limits
of around 1,000 characters per line; longer lines would be truncated.

All are also 8-bit clean, meaning that they can edit files containing any 8-bit character.
It is even possible to edit binary and executable files, if necessary. This can be really
useful at times. You may or may not have to tell each editor that a file is binary:

nvi
Automatically handles binary data. No special command-line or ex options are
required.

elvis
Under Unix, does not treat a binary file differently from any other file. On other
systems, it uses the elvis.brf file to set the binary option, to avoid newline trans-
lation issues. (The elvis.brf file and hex display modes are described in the section
“Interesting Features” on page 335.)

Vim
Does not limit the length of a line. When binary is not set, Vim is like nvi and
automatically handles binary data. However, when editing a binary file, you should
either use the -b command-line option or :set binary. These set several other Vim
options that make it easier to edit binary files.

‡ Well, up to the maximum value of a C long, 2,147,483,647 (on a 32-bit computer).

Improved Facilities | 135

www.it-ebooks.info

http://www.it-ebooks.info/


vile
Automatically handles binary data. No special command-line or ex options are
required.

Finally, there is one tricky detail. Traditional vi always writes the file with a final new-
line appended. When editing a binary file, this might add one character to the file and
cause problems. nvi and Vim are compatible with vi by default and add that newline.
In Vim you can set the binary option so this doesn’t happen. elvis and vile never
append the extra newline.

Infinite Undo
Unix vi allows you to undo only your last change, or to restore the current line to the
state it was in before you started making any changes. All of the clones provide “infinite
undo,” the ability to keep undoing your changes, all the way back to the state the file
was in before you started any editing.

Incremental Searching
When incremental searching is used, the editor moves the cursor through the file,
matching text as you type the search pattern. When you finally type ENTER , the search
is finished.§ If you’ve never seen it before, it is rather disconcerting at first. However,
after a while you get used to it, and eventually you come to wonder how you ever did
without it.

nvi, Vim, and elvis enable incremental searching with an option, and vile uses two
special vi mode commands. vile can be compiled with incremental searching disabled,
but it is enabled by default. Table 8-6 shows the options each editor provides.

Table 8-6. Incremental searching

Editor Option Command Action

nvi searchincr  The cursor moves through the file as you type, always being placed
on the first character of the text that matches.

Vim incsearch  The cursor moves through the file as you type. Vim highlights the text
that matches what you’ve typed so far.

elvis incsearch  The cursor moves through the file as you type. elvis highlights the
text that matches what you’ve typed so far.

vile  ^X S, ^X R The cursor moves through the file as you type, always being placed
on the first character of the text that matches. ^X S incrementally
searches forward through the file, while ^X R incrementally searches
backward.

§ Emacs has always had incremental searching.

136 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


Left-Right Scrolling
By default, vi and most of the clones wrap long lines around the screen. Thus, a single
logical line of the file may occupy multiple physical lines on your screen.

There are times when it might be preferable for a long line to simply disappear off the
righthand edge of the screen instead of wrapping. Moving onto that line and then
moving to the right would “scroll” the screen sideways. This feature is available in all
of the clones. Typically, a numeric option controls how much to scroll the screen, and
a Boolean option controls whether lines wrap or disappear off the edge of the screen.
vile also has command keys to perform sideways scrolling of the entire screen. Ta-
ble 8-7 shows how to use horizontal scrolling with each editor.

Table 8-7. Sideways scrolling

Editor Scroll amount Option Action

nvi sidescroll = 16 leftright Off by default. When set, long lines simply go off the edge of
the screen. The screen scrolls left or right by 16 characters at
a time.

elvis sidescroll = 8 wrap Off by default. When set, long lines simply go off the edge of
the screen. The screen scrolls left or right by eight characters
at a time.

Vim sidescroll = 0 wrap Off by default. When set, long lines simply go off the edge of
the screen. With sidescroll set to zero, each scroll puts the
cursor in the middle of the screen. Otherwise, the screen
scrolls by the desired number of characters.

vile sideways = 0 linewrap Off by default.  When set, long lines wrap. Thus, the default
is to have long lines go off the edge of the screen. Long lines
are marked at the left and right edges with < and >. With
sideways set to zero, each scroll moves the screen by ⅓. Oth-
erwise, the screen scrolls by the desired number of characters.

  horizscroll On by default. When set, moving the cursor along a long line
offscreen shifts the whole screen. When not set, only the cur-
rent line shifts; this may be desirable on slower displays.

vile has two additional commands,  ^X ^R and ^X ^L. These two commands scroll the
screen right and left, respectively, leaving the cursor in its current location on the line.
You cannot scroll so far that the cursor position would go off the screen.

Visual Mode
Typically, operations in vi apply to units of text—such as lines, words, or characters—
or to sections of text from the current cursor position to a position specified by a search
command. For example, d/^} deletes up to the next line that starts with a right brace.
elvis and vile provide a mechanism to explicitly select a region of text to which an
operation will apply. In particular, it is possible to select a rectangular block of text and
apply an operation to all the text within the rectangle. See the section “Visual Mode

Improved Facilities | 137

www.it-ebooks.info

http://www.it-ebooks.info/


Motion” on page 168 for details on Vim. For details on the other editors, see each
editor’s respective chapter in Part III.

Mode Indicators
As you know by now, vi has two modes—command mode and insert mode. Usually,
you can’t tell by looking at the screen which mode you’re in. Furthermore, it’s often
useful to know where in the file you are, without having to use the ̂ G or ex := commands.

Two options address these issues: showmode and ruler. All the clones agree on the option
names and meanings, and even Solaris vi has the showmode option.

Table 8-8 lists the special features in each editor.

Table 8-8. Position and mode indicators

Editor With ruler, displays With showmode, displays

nvi Row and column Insert, change, replace, and command mode indicators 

elvis Row and column Input and command mode indicators 

Vim Row and column Insert, replace, and visual mode indicators 

vile Row, column, and
percent of file

Insert, replace, and overwrite mode indicators 

vi N/A Separate mode indicators for open, input, insert, append, change,
replace, replace one character, and substitute modes

The GUI version of elvis changes the cursor shape depending on the current mode.

Programming Assistance
vi was developed primarily as a programmer’s editor. It has features that make things
especially easy for the traditional-style Unix programmer—someone writing C pro-
grams and troff documentation. (Real programmers write real documentation in
troff.) Several of the clones are proud bearers of this tradition, adding a number of
features that make them even more usable and capable for the “power user.”‖

Two features (among many) most deserve discussion:

Edit-compile speedup
elvis, Vim, and vile allow you to easily invoke make, capture the errors from your
compiler, and automatically move to the lines containing the errors. You can then
fix the errors and rerun make, all from within the editor.

‖ In contrast to the What You See Is What You Get (WYSIWYG) philosophy, Unix is the You Asked For It,
You Got It operating system. (With thanks to Scott Lee.)

138 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


Syntax highlighting
elvis, Vim, and vile have the ability to highlight and/or change the color of dif-
ferent syntactic elements in different kinds of files.

Edit-Compile Speedup
Programming often consists of an “edit-compile-debug” cycle. You make changes,
compile the new code, and then test and debug it. When learning a new language,
syntax errors are especially common, and it is frustrating to be constantly stopping and
restarting (or suspending and resuming) the editor in between compiles.

elvis, Vim, and vile all provide facilities that allow you to stay within the editor while
compiling your program. Furthermore, they capture the compiler’s output and use it
to automatically go to each line that contains an error.# Consistent use of this capability
can save time and improve programmer productivity.

Here is an example, using elvis. You are beginning to learn C++, so you start out with
the obligatory first program:

Keystrokes Results

:w hello.C  #include <iostream>

 int main()
 {
         std::cout << "hello, world!\n ;
         return 0;
 }

 You enter the program, forgetting the closing quote, and then write the program to
hello.C.

:make hello  g++     hello.C   -o hello
 hello.C:5: error: missing terminating " character
 hello.C: In function 'int main()':
 hello.C:6: error: expected primary-expression before 'return'
 hello.C:6: error: expected `;' before 'return'
 make: *** [hello] Error 1

 You type the :make command to run make, which in turn runs the C++ compiler. (In this
case, g++.) The output from g++ describes each error.

  #include <iostream>

 int main()
 {
         std::cout << "hello, world\n ;
         return 0;
 }
 ~                                                                               
 line 5: missing terminating " character         5,8   Command

 The make output disappears quickly, and elvis replaces the status line with the first error
message, positioning the cursor on the line that needs to be fixed.

# Yet another feature that Emacs users are accustomed to comes to vi.

Programming Assistance | 139

www.it-ebooks.info

http://www.it-ebooks.info/


You can fix the error, resave the file, rerun :make, and eventually compile your program
without errors.

All of the editors have similar facilities. They will all compensate for changes in the file,
correctly moving you to subsequent lines with errors. See the section “Compiling and
Checking Errors with Vim” on page 279 for details on Vim. For details on the other
editors, see each editor’s respective chapter in Part III.

Syntax Highlighting
elvis, Vim, and vile all provide some form of syntax highlighting. All three also provide
syntax coloring, which changes the color of different parts of the file on displays that
can do so (such as under X11 or the Linux console). See the section “Syntax High-
lighting” on page 270 for more information on syntax highlighting in Vim. For infor-
mation on the other editors, see each editor’s chapter in Part III.

Editor Comparison Summary
Most of the clones support most or all of the features described earlier in this chapter.
Table 8-9 summarizes what each editor supports. Of course, the table does not tell the
full story; the details are provided in the rest of the book.

Table 8-9. Feature summary chart

Feature nvi elvis vim vile

Multiwindow editing • • • •

GUI  • • •

Extended regular expressions • • • •

Enhanced tags  • • •

Tag stacks • • • •

Arbitrary length lines • • • •

8-bit data • • • •

Infinite undo • • • •

Incremental searching • • • •

Left-right scrolling • • • •

Mode indicators • • • •

Visual mode  • • •

Edit-compile speedup  • • •

Syntax highlighting  • • •

Multiple OS support  • • •

140 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

http://www.it-ebooks.info/


Nothing Like the Original
For many, many years, the source code to the original vi was unavailable without a
Unix source code license. Although educational institutions were able to get licenses
at a relatively low cost, commercial licenses were always expensive. This fact prompted
the creation of all of the vi clones described in this book.

In January 2002, the source code for V7 and 32V UNIX was made available under an
open source-style license.* This opened up access to almost all of the code developed
for BSD Unix, including ex and vi.

The original code does not compile “out of the box” on modern systems, such as GNU/
Linux, and porting it is difficult.† Fortunately, the work has already been done. If you
would like to use the original, “real” vi, you can download the source code and build
it yourself. See http://ex-vi.sourceforge.net/ for more information.

A Look Ahead
Part II covers Vim in excruciating detail. Seven full chapters cover the topics listed here,
as well as the important subject of writing scripts for Vim, which provide much of the
power and usefulness that come “out of the box” with that editor.

The three chapters in Part III cover nvi, elvis, and vile, in that order. Each chapter
has the following outline:

1. Who wrote the editor, and why.

2. Important command-line arguments.

3. Online help and other documentation.

4. Initialization—what files and environment variables the program reads, and in
what order.

5. Multiwindow editing.

6. GUI interface(s), if any.

7. Extended regular expressions.

8. Improved editing facilities (tag stacks, infinite undo, etc.).

9. Programming assistance (edit-compile speedup, syntax highlighting).

10. Interesting features unique to the program.

11. Where to get the sources, and what operating systems the editor runs on.

* For more information about this, see the Unix Historical Society web site at http://www.tuhs.org.

† We know. We tried.

Nothing Like the Original | 141

www.it-ebooks.info

http://ex-vi.sourceforge.net/
http://www.tuhs.org
http://www.it-ebooks.info/


All of the distributions are compressed with gzip, GNU zip. If you don’t already
have it, you can get gzip from ftp://ftp.gnu.org//gnu/gzip/gzip-1.3.12.tar.‡ The
untar.c program available from the elvis FTP site is a very portable, simple pro-
gram for unpacking gziped tar files on non-Unix systems.

Because each of the programs discussed in Part III continues to undergo development,
we have not attempted an exhaustive treatment of each one’s features. Such an ap-
proach would quickly become outdated. Instead, we have “hit the highlights,” covering
the features that you are most likely to need and that are least likely to change as the
program evolves. You should supplement this book with each program’s online doc-
umentation if you need to know how to use every last feature of your editor.

‡ This is current as of this writing. You may find a newer version.

142 | Chapter 8: Introduction to the vi Clones

www.it-ebooks.info

ftp://ftp.gnu.org//gnu/gzip/gzip-1.3.12.tar
http://www.it-ebooks.info/


PART II

Vim

Part II describes the most popular vi clone, named Vim (which stands for “vi im-
proved”). This part contains the following chapters:

• Chapter 9, Vim (vi Improved): An Introduction

• Chapter 10, Major Vim Improvements over vi

• Chapter 11, Multiple Windows in Vim

• Chapter 12, Vim Scripts

• Chapter 13, Graphical Vim (gvim)

• Chapter 14, Vim Enhancements for Programmers

• Chapter 15, Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 9

Vim (vi Improved): An Introduction

This part of the book describes Vim, the other vi. We briefly introduce Vim and the
most noteworthy of its many technical advances over vi, along with a bit of history.
We’ll finish this chapter with some pointers to special Vim modes and teaching tools
for new users. The following chapters cover:

• Editing enhancements over vi

• Multiwindow editing

• Vim scripts

• The Vim graphical user interface (GUI)

• Programming enhancements

• Editing patterns

• Other cool stuff

Vim stands for “vi improved.” It was written and is maintained by Bram Moolenaar.
Today, Vim is perhaps the most widely used vi clone, and there exists a separate
Internet domain (vim.org) dedicated to it. The current version is 7.1.

Unconstrained by standards or committees, Vim continues to grow in functionality.
An entire community has grown up around it. Collectively, they decide what new fea-
tures to add and what existing features to modify, by nominating and voting for sug-
gestions during development cycles.

Inspired by Bram’s dedicated energy and the voting system, Vim enjoys a strong fol-
lowing. It maintains its value by growing and changing with the computing industry
and, correspondingly, with editing needs. For instance, its context-specific language
editing started with C and has grown to encompass C++, Java, and now C#.

Vim includes many new features that facilitate the editing of code in many new lan-
guages. In fact, many features promised at the release of this book’s previous edition
are now fully implemented. The computing landscape has changed dramatically and
dynamically these last 10 years, and Vim has matched it stride for stride.

145

www.it-ebooks.info

http://www.it-ebooks.info/


Today Vim is so ubiquitous, especially among Unix and its variants (e.g., BSD and
GNU/Linux), that for many users Vim has become synonymous with vi. Indeed, many
distributions of GNU/Linux come with a default installation of Vim as the /bin/vi
binary!

Vim provides features not in vi that are considered essential in modern-day text editors,
such as ease of use, graphical terminal support, color, syntax highlighting and format-
ting, as well as extended customization.

Overview

Author and History*

Bram started work on Vim after buying an Amiga computer. As a Unix user he’d been
using the vi-like editor called stevie, one he considered far from perfect. Fortunately,
it came with the source code, and he began by making the editor more compatible with
vi and fixing bugs. After a while the program became quite usable, and Vim version
1.14 was published on Fred Fish disk 591 (a collection of free software for the Amiga).

Other people began to use the program, liked it, and started helping with its develop-
ment. A port to Unix was followed by ports to MS-DOS and other systems, and sub-
sequently Vim became one of the most widely available vi clones. More features were
added gradually: multilevel undo, multiwindowing, etc. Some features were unique to
Vim, but many were inspired by other vi clones. The goal has always been to provide
the best features to the user.

Today Vim is one of the most full-featured of the vi-style editors anywhere. The online
help is extensive.

One of the more obscure features of Vim is its support for typing from right to left,
which is useful for languages such as Hebrew and Farsi and illustrates Vim’s versatility.
Being a rock-stable editor on which professional software developers can rely is another
of Vim’s design goals. Vim crashes are rare, and when they happen you can recover
your changes.

Development on Vim continues. The group of people helping to add features and port
Vim to more platforms is growing, and the quality of the ports to different computer
systems is increasing. The Microsoft Windows version has dialogs and a file-selector,
which opens up the hard-to-learn vi commands to a large group of users.

* This section is adapted from material supplied by Bram Moolenaar, Vim’s author. We thank him.

146 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


Why Vim?
Vim so dramatically extends the traditional vi functionality that one might more easily
ask, “Why not Vim?” vi introduced the standard from which others borrowed (vile,
elvis, nvi), and Vim took the baton and ran with it. Vim dared to radically extend
features, sometimes pushing processors to the edge of their ability to perform Vim’s
work with adequate response time. We don’t know whether it was an article of faith
by Bram that processor and memory speeds would improve enough to catch up with
Vim’s demands, but fortunately, modern processors and computers handle even the
toughest Vim tasks well.

Compare and Contrast with vi
Vim is more universally available than vi. There is at least some version of Vim available
on virtually all operating systems, whereas vi is available only on Unix or Unix work-
alike systems.

vi is the original and has changed little over the years. It is the POSIX standard-bearer 
and fulfills its role well. Vim starts where vi leaves off, providing all of vi’s functionality
and then extending that to add graphical interfaces and features such as complex op-
tions and scripting that go far beyond vi’s original capabilities.

Vim ships with its own built-in documentation in the form of a directory of specialized
text files. A casual inspection of this directory (using the standard Unix word count
tool, wc -c *.txt) shows 129 files comprising almost 122,000 lines of documentation!
This is the first hint at the scope of Vim’s features. Vim accesses these files via its internal
“help” command, another feature not available in vi. We look more closely at Vim’s
help system later and offer tips and tricks to maximize your learning experience.

One way to contrast Vim’s features with vi’s is to look more closely at the included
directory of help files. Vim flags options, commands, and functions in these files with
an annotation of “not in vi” or “not available in vi”. A nonscientific scan of the help
files (using a quick grep -i 'not.. *in vi') yields over 700 hits. Even if these hits were
redundant by a factor of two, it’s clear Vim has many features vi does not.

The following chapters cover some of the more interesting Vim features. From exten-
sions of the historic Vim to new functionality, we describe the best and most popular
productivity features. We cover topics universally recognized as useful enhancements,
such as syntax color highlighting. We also look at some more obscure features that are
useful for added productivity. For example, we show a way to customize the Vim status
line to show a real-time update of the date and time each time you move the cursor.

Categories of Features
Vim’s features span the range of activities common to virtually any text-editing task.
Some features just extend what users wanted the original vi to do; others are completely

Overview | 147

www.it-ebooks.info

http://www.it-ebooks.info/


new and not in vi. And if you need something that’s not there, Vim offers built-in
scripting for unlimited extensibility and customization. Some categories of Vim features
include:

Syntax extensions
Vim lets you control indentation and syntax-based color coding of your text. And
you have many options to define this automatic format. If you don’t like the color
highlighting, you can change it. If you need a certain style of indentation, Vim
provides it, or if you have a specialized need, it lets you customize your
environment.

Programmer assistance
Although Vim doesn’t try to provide all programming needs, it offers many features
normally found in Integrated Development Environments (IDEs). From quick edit-
compile-debug cycles to autocompletion of keywords, Vim has specialized features
to let you do more than edit quickly—it helps you program.

Graphical user interface (GUI) features
Vim extends usability to a more general population by allowing point-and-click
editing, like many modern easy-to-use editors. All of the power-user functionality
gets the boost of simple GUI accessibility for lighter and simpler editing tasks.

Scripting and plug-ins
You can write your own Vim extensions or download plug-ins from the Internet.
You can even contribute to the Vim community by publishing your extensions for
others to use.

Initialization
Vim, like vi, uses configuration files to define sessions at startup time, but Vim has
a vastly expanded repertoire of definable behaviors. You can keep it as simple as
setting a few options, as you would in vi, or you can write an entire suite of cus-
tomizations that define your session based on any context you define. For example,
you can script your initialization files to precompile code based on which directory
you’re editing files in, or you can retrieve information from some real-time source
and incorporate it into your text at startup.

Session context
Vim keeps session information in a file, .viminfo. Ever wonder “Where was I?”
when revisiting and editing a file? This fixes that! You can define how much and
what kind of information to sustain across sessions. For example, you can define
how many “recent documents” or last-edited files to track, how many edits (dele-
tions, changes) to remember per file, how many commands to remember from the
command history, and how many buffers and lines to keep from previous edit
actions (“puts,” “deletes,” etc.). Not only does Vim remember edits in your last
session for a file, it remembers basic things between files. This is handy for editing
activities such as grabbing a sequence of lines in one file (with y [yank], or d [delete])
and “putting” them in another. Whatever is in the unnamed buffer is remembered
and available from one file to the next. Also, Vim remembers the last search pattern,

148 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


so you can simply use the command n (find next occurrence) when beginning a
session to find the last-used search pattern.

Vim also remembers which line you were on for each of your most recently edited
files. If you exit your edit session with the cursor on line 25, it repositions you on
line 25 the next time you edit that file.

Postprocessing
In addition to performing presession functions, Vim lets you define what to do
after you’ve edited a file. You can write cleanup routines to delete temporary files
accumulated from compiles, or do real-time edits to the file before it’s written back
to storage. You have complete control to customize any postedit activities

Transitions
Vim manages state transitions. When you move within a session from buffer to
buffer or window to window (usually the same thing), Vim automatically does pre-
and post- housekeeping.

Transparent editing
Vim detects and automatically unbundles archived or compressed files. For ex-
ample, you can directly edit a zipped file such as myfile.tar.gz. You can even edit
directories. Vim lets you navigate a directory and select files to edit using familiar
Vim navigation commands.

Meta-information
Vim offers four handy read-only registers from which the user may extract meta-
information for “puts”: the current filename (%), the alternate filename (#), the last
command-line command executed (:), and the last inserted text (., a period).

The black-hole register
This is an obscure but useful extension of editing registers. Normally, text deletions
put this text into buffers using a rotation scheme, which is useful for cycling
through old deletes to get back old and deleted text. Vim provides the “black-hole”
register as a place to throw deleted text away, without affecting the rotation of
deleted text in the normal registers. If you’re a Unix user, this register is Vim’s
version of /dev/null.

Keyword completion
Vim lets you complete partially typed words with context-sensitive completion
rules. For example, Vim can look up words in a dictionary or in a file containing
keywords specific to a language.

Vim also lets you drop back to a vi-compatible mode with its compatible option (:set
compatible). Most of the time you’ll probably want Vim’s extra features, but it’s a
thoughtful touch to provide for backward compatibility if you need it.

Overview | 149

www.it-ebooks.info

http://www.it-ebooks.info/


Philosophy
Vim’s philosophy aligns closely with vi’s. Both provide power and elegance in editing.
Both rely on modality (command mode versus input mode). And both bring editing to
the keyboard: that is, users can perform all of their editing work quickly and efficiently
and never touch a mouse (or a ̂ X ^C). We like to think of this as “touch editing,” which
is analogous to “touch typing,” reflecting the corresponding increase in speed and
efficiency that both bring to their respective tasks.

Vim extends that philosophy by permitting and providing features for less experienced
users (GUI, visual highlight mode) and power options for the power users (scripting,
extended regular expressions, configurable syntax, and configurable indenting).

And for the super power users who like to code, Vim comes with source code. Users
are free (even encouraged) to improve on the improvements. Philosophically, Vim
strikes a balance for all users’ needs.

Where to Get Vim
If your environment is some variant of Unix—including Mac OS X—you may be in
luck and already have Vim installed. If it’s available and executable in your predefined
PATH environment variable, you should be able to type vim at the shell command line
and open a Vim window. If you get the following typical Unix error message:

sh: command not found: vim 

try vi and see whether a Vim welcome message appears. Your installation may actually
substitute Vim for vi.

On many systems you’ll find old versions of Vim. This section may therefore be useful
to help you install the latest version, even if you have Vim already. Once you are in the
editor, check not only that you are running Vim but also the version with 
the :version command. Vim will provide a screen resembling this:

:version
VIM - Vi IMproved 7.0 (2006 May 7, compiled Aug 30 2006 21:54:03)
Included patches: 1-76
Compiled by corinna@cathi
Huge version without GUI.  Features included (+) or not (-):
+arabic +autocmd -balloon_eval -browse ++builtin_terms +byte_offset +cindent 
-clientserver -clipboard +cmdline_compl +cmdline_hist +cmdline_info +comments 
+cryptv +cscope +cursorshape
 ...
 +profile -python +quickfix +reltime +rightleft -ruby +scrollbind +signs 
+smartindent -sniff +statusline -sun_workshop +syntax +tag_binary +tag_old_static 
-tag_any_white -tcl +terminfo +termresponse +textobjects +title -toolbar 
+user_commands +vertsplit +virtualedit +visual +visualextra +viminfo +vreplace 
+wildignore +wildmenu +windows +writebackup -X11 -xfontset -xim -xsmp 
-xterm_clipboard -xterm_save
   system vimrc file: "$VIM/vimrc"

150 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


     user vimrc file: "$HOME/.vimrc"
      user exrc file: "$HOME/.exrc"
  fall-back for $VIM: "/usr/share/vim"
Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2
 Linking: gcc   -L/usr/local/lib -o vim.exe       -lncurses  -liconv -lint 

Some of this output is discussed in Chapter 10 in the context of helping you compile
Vim with customizations.

Interestingly, on one of the authors’ Mac Mini, with OS X version
10.4.10 installed, not only does a vi command invoke Vim but the doc-
umentation (the “manpage”) documents Vim!

If you haven’t found Vim so far, here are a few common directories you may want to
search before you try to download and install it. If you find the executable, add its
directory as part of your PATH and you’re ready to go:

/usr/bin (this should be in PATH anyway)
/bin (so should this)
/opt/local/bin
/usr/local/bin

If none of those work, you probably don’t have Vim. Happily, Vim is available in many
forms for many platforms and is (usually and relatively) easy to retrieve and install. The
following sections guide you to getting Vim for your platform. We discuss how to install
Vim for these platforms, in order:

• Unix and variants, including GNU/Linux

• Windows XP, 2000, Vista

• Macintosh

Getting Vim for Unix and GNU/Linux
Many modern Unix environments already come with some version of Vim. Most GNU/
Linux distributions simply link the default vi location /bin/vi to a Vim executable.
Most Unix users won’t ever need to install it.

Because there are so many variants of Unix and so many flavors of some variants (e.g.,
Sun Solaris HP-UX, *BSD, all the distributions of GNU/Linux), the most
straightforward and recommended way to get Vim is to download its source, compile
it, and install it.

Getting Vim for Unix and GNU/Linux | 151

www.it-ebooks.info

http://www.it-ebooks.info/


The installation procedure described here requires a development en-
vironment capable of compiling source code. Although most Unix var-
iants provide compilers and related tools, some (notably current releases
of the Ubuntu GNU/Linux distribution) require you to download and
install additional packages before you can experience the pleasures of
compiling code.

The Vim home page refers to a new installation procedure it recom-
mends, called aap. It provides a link and brief introduction. Because
aap is new and the old method of installing by downloading and compil-
ing works well, we are not recommending aap as the installation proce-
dure of choice. By the time you read this book, use of aap may be well
established.

There are also prepackaged Vim bundles offering easy standard instal-
lations for GNU/Linux (Red Hat RPMs, Debian pkgs), IRIX
(SoftwareManager), Sun Solaris (Companion Software), and HP-UX.
The Vim home page provides links for all of these systems.

Vim source code is available from the Vim home page, http://www.vim.org. Source code
is bundled in tarballs compressed in either GZIP (.gz) or BZIP2 (.bz2) format. Virtually
all operating systems recognize and handle GZIP files nowadays, and most Unix var-
iants have the utilities to handle BZIP2 as well. Download the source and unpack the
compressed file as follows, substituting the name of the file you downloaded if you are
installing a different version:

.gz file

$ gunzip vim-7.1.tar.gz

.bz2 file

$ bunzip2 vim-7.1.tar.gz

After the command completes, the file vim-7.1.tar (or a comparable file reflecting the
version you downloaded) remains. Now untar the tar file:

$ tar xvf vim-7.1.tar
vim71
vim71/README.txt
vim71/runtime
vim71/README_unix.txt
vim71/README_lang.txt
vim71/src
vim71/Makefile
vim71/Filelist
vim71/README_src.txt
  ...
vim71/runtime/doc/vimtutor-ru.1
vim71/runtime/doc/xxd-ru.1
vim71/runtime/doc/evim-ru.UTF-8.1
vim71/runtime/doc/vim-ru.UTF-8.1

152 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.vim.org
http://www.it-ebooks.info/


vim71/runtime/doc/vimdiff-ru.UTF-8.1
vim71/runtime/doc/vimtutor-ru.UTF-8.1
vim71/runtime/doc/xxd-ru.UTF-8.1

You can now remove the vim-7.1.tar file. Change directories to the Vim directory
created by the tar command:

$ cd vim71

The configure file is a script that configures the compilation parameters. Most config-
uration work should be left to the script, which examines the host environment and
turns on and off features according to software installed on the system.

You can decide at this point whether to use the defaults or selectively choose (or not
choose) features. For example, you may want to compile with the perl interface turned
on where the configure script otherwise would not have done so, anticipating future
installation of perl scripting tools:

$ ./configure --enable-perlinterp

Or, you may decide you have no use for a perl interface and turn that feature off with
the configure options:

$ ./configure --disable-perlinterp

Current versions of Vim offer slightly different ways to customize your
installation. Instead of putting all of the --disable-XXX and --enable-
XXX options in configure options, the INSTALL file points you to making
changes in the feature.h file. Unless you have compelling reasons to
make changes in that file, we recommend you compile with available
options (described in README.txt) and customize your editing needs in
Vim configuration files.

The normal configure output (default, with no options) looks something like:

$ configure
/home/ehannah/Desktop/vim/vim71/src
configure: loading cache auto/config.cache
checking whether make sets $(MAKE)... (cached) yes
checking for gcc... (cached) gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables... 
...
checking for NLS... no "po/Makefile" - disabled
checking for dlfcn.h... (cached) yes
checking for dlopen()... no
checking for dlopen() in -ldl... yes
checking for dlsym()... yes
checking for setjmp.h... (cached) yes
checking for GCC 3 or later... yes
configure: creating auto/config.status

Getting Vim for Unix and GNU/Linux | 153

www.it-ebooks.info

http://www.it-ebooks.info/


config.status: creating auto/config.mk
config.status: creating auto/config.h
config.status: auto/config.h is unchanged
      

Now build Vim with the make utility:

$ make
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && /usr/local/lib/cw/make first
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2        -o objects/
    charset.o charset.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2        -o objects/
    diff.o diff.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2        -o objects/
    digraph.o digraph.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2        -o objects/
    edit.o edit.c

   ...

make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
creating auto/pathdef.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H     -g -O2        -o objects/
    pathdef.o auto/
    pathdef.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
link.sh: Using auto/link.sed file to remove a few libraries
  gcc     -o vim objects/buffer.o objects/charset.o objects/diff.o
  objects/digraph.o objects/edit.o objects/eval.o objects/ex_cmds.o
  objects/ex_cmds2.o objects/ex_docmd.o objects/ex_eval.o
  objects/ex_getln.o objects/fileio.o objects/fold.o objects/getchar.o
  objects/hardcopy.o objects/hashtab.o  objects/if_cscope.o
  objects/if_xcmdsrv.o objects/main.o objects/mark.o objects/memfile.o
  objects/memline.o objects/menu.o objects/message.o objects/misc1.o
  objects/misc2.o objects/move.o objects/mbyte.o objects/normal.o
  objects/ops.o objects/option.o objects/os_unix.o objects/pathdef.o
  objects/popupmnu.o objects/quickfix.o objects/regexp.o objects/screen.o
  objects/search.o objects/spell.o objects/syntax.o  objects/tag.o
  objects/term.o objects/ui.o objects/undo.o objects/window.o
  objects/netbeans.o  objects/version.o       -lncurses -lgpm -ldl
link.sh: Linked fine with a few libraries removed
cd xxd; CC="gcc" CFLAGS=" -g -O2" \
    /usr/local/lib/cw/make -f Makefile
/home/ehannah/Desktop/vim/vim71/src/xxd
make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
gcc  -g -O2  -DUNIX -o xxd xxd.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
      

If all has gone well, you now have an executable Vim binary in the src directory. Vim
is now ready for use, but you have to either invoke it by specifying a full pathname or

154 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.it-ebooks.info/


add the directory in which Vim was placed to each user’s executable path. If you can’t
install programs as an administrator, this will have to do.

To finish installing Vim as a general resource to all users of the machine, you must have
administrator (root) privileges. If you do, become root and enter:

# make install
Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && make install
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
if test -f /usr/local/bin/vim; then \
  mv -f /usr/local/bin/vim /usr/local/bin/vim.rm; \
  rm -f /usr/local/bin/vim.rm; \
fi
cp vim /usr/local/bin
strip /usr/local/bin/vim
chmod 755 /usr/local/bin/vim
cp vimtutor /usr/local/bin/vimtutor
chmod 755 /usr/local/bin/vimtutor
/bin/sh ./installman.sh install /usr/local/man/man1 "" /usr/local/
    share/vim /usr/local/share/vim/vim71 /usr/local/share/vim ../
    runtime/doc 644 vim vimdiff evim
installing /usr/local/man/man1/vim.1
installing /usr/local/man/man1/vimtutor.1
installing /usr/local/man/man1/vimdiff.1
  
  ...

if test -d /usr/local/share/icons/hicolor/48x48/apps -a -w /usr/
    local/share/icons/hicolor/48x48/apps \
    -a ! -f /usr/local/share/icons/hicolor/48x48/apps/gvim.png; then \
   cp ../runtime/vim48x48.png /usr/local/share/icons/hicolor/48x48/
       apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/32x32/apps -a -w /usr/
    local/share/icons/locolor/32x32/apps \
    -a ! -f /usr/local/share/icons/locolor/32x32/apps/gvim.png; then \
   cp ../runtime/vim32x32.png /usr/local/share/icons/locolor/32x32/
       apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/16x16/apps -a -w /usr/
    local/share/icons/locolor/16x16/apps \
    -a ! -f /usr/local/share/icons/locolor/16x16/apps/gvim.png; then \
   cp ../runtime/vim16x16.png /usr/local/share/icons/locolor/16x16/
       apps/gvim.png; \
fi
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
      

Installation is complete; as long as users’ PATH variables are set correctly, they should
all have access to Vim.

Getting Vim for Unix and GNU/Linux | 155

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Vim for Windows Environments
There are two main options for Microsoft Windows. The first is the self-installing ex-
ecutable, gvim.exe, available from the Vim home page. Download and run this, and it
should do the rest. We have installed Vim using this executable on different Windows
machines, and it’s always worked cleanly. The binary should install correctly on Win-
dows XP, 2000, NT, ME, 98, and 95.

At one point in the install process, a DOS window pops up and gives a
warning about something not being verifiable. We have never seen this
become a problem.

Another option for Windows users is to install Cygwin (http://www.cygwin.com/), a
suite of common GNU tools ported to the Windows platform. It’s an amazingly full
implementation of virtually all mainstream software used on Unix platforms. Vim is
part of the standard Cygwin installation and can run from a Cygwin shell window.

Using Vim with Cygwin
The text-based console Vim works fine in Cygwin, but Cygwin’s gvim expects an X
Window System server to be running and will degrade gracefully into running text-
based Vim if started without this server.

To get Cygwin’s gvim working (assuming you wish to run it on a local screen), start
Cygwin’s X server from the command line in a Cygwin shell as follows:

$ X -multiwindow &

The -multiwindow option tells the X server to let Windows manage the Cygwin appli-
cations. There are many other ways to use Cygwin’s X server, but that discussion is
outside the scope of this book. Installation of Cygwin’s X server is also outside the
scope; if it is not installed, see the Cygwin home page for further information. A graph-
ical “X” icon should appear in the Windows systray. This assures that the X server is
in fact running.

It is confusing to have both Cygwin’s Vim and www.vim.org’s Vim installed at the same
time. Some of the configuration files referenced for Vim configuration may reside in
different places, thus resulting in seemingly identical versions of Vim that start up with
completely different options. For instance, Cygwin and Windows may have different
notions of what is the home directory.

156 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://www.cygwin.com/
http://www.it-ebooks.info/


Getting Vim for the Macintosh Environment
Mac OS X comes with Vim 6.2 installed, but not with any GUI version. Users can
download .tar.bz2 files to compile versions 6.4 and 7.1 with a GUI.

When downloading the source, however, the maintainer recommends downloading
from CVS (a source control system) to ensure up-to-date source code along with the
most recent patches. This isn’t difficult, but the idea of downloading via command line
may seem a bit foreign to newer users.

Once files are downloaded, the procedure for installation is very similar to the Unix
compilation and installation procedure described earlier in the section “Getting Vim
for Unix and GNU/Linux” on page 151.

Other Operating Systems
Vim’s home page lists more environments for which Vim ostensibly works, but it offers
the caveat to use them at your own risk. These other Vims are for:

• QNX, a real-time operating system (RTOS)

• Agenda

• Sharp Zaurus, a Linux-based handheld device

• HP Jornada, a Linux-based handheld device

• Windows CE, a Windows version for handheld devices

• Compaq Tru64 Unix on Alpha

• Open VMS, Digital’s VMS with POSIX

• Amiga

• OS/2

• RISC OS, an OS-based on a reduced instruction set CPU (RISC)

• MorphOS, an OS-based on the Amiga OS built on top of the Quark kernel

Aids and Easy Modes for New Users
Recognizing that both vi and Vim make some learning demands on new users, Vim
provides several features that make it easier to use for some:

Graphical Vim (gvim)
When the user invokes the gvim command, a rich graphical window is displayed,
offering Vim with some of the point-and-click features made popular by modern
GUI programs. In many environments, gvim is a different binary file created by
compiling Vim with all of the GUI options turned on. It can also be invoked through
vim -g.

Getting Vim for the Macintosh Environment | 157

www.it-ebooks.info

http://www.it-ebooks.info/


“Easy” Vim (evim)
The evim command substitutes some simple behaviors for standard vi features,
which some users who are unfamiliar with vi might find to be a more intuitive way
to edit files. Expert users probably won’t find this mode easy, because they’re al-
ready used to standard vi behavior. It can also be invoked through vim -e.

vimtutor
Vim comes with vimtutor, a separate command that essentially starts Vim with a
special help file. This invocation of Vim gives users another starting point for
learning the editor. vimtutor takes about 30 minutes to complete.

Summary
vi is still the standard text-editing tool on Unix. vi was almost revolutionary in its time,
with its dual mode and touch-edit philosophy. Vim continues where vi stops, and it is
the next evolutionary step for powerful editing and text management:

• Vim extends vi, building on the excellent standard set by the older editor. Although
other editors have also built upon the original, Vim has emerged as the most pop-
ular and widely used vi clone.

• Vim offers far more than vi, enough more to become the new standard.

• Vim is for beginners and for power users. For beginners, it offers various learning
tools and “easy” modes, whereas for experts it offers powerful extensions to vi,
along with a platform on which power users can enhance and tune Vim to their
exact needs.

• Vim runs everywhere. As discussed earlier, in environments where Vim wasn’t
available, others stepped in and ported it to most useful OS platforms. Vim may
not literally be everywhere, but it’s close!

• Vim is free. Furthermore, as mentioned in the previous release of this book, Vim
is charityware. The work Bram Moolenaar has done creating, improving, main-
taining, and sustaining Vim is one of the truly remarkable feats in the free software
market. If you like his work, Bram invites you to learn about his favorite cause,
helping children in Uganda. More information is available at the web site, http://
iccf-holland.org/, or simply use Vim’s built-in help command, topic “uganda”
(:help uganda).

158 | Chapter 9: Vim (vi Improved): An Introduction

www.it-ebooks.info

http://iccf-holland.org/
http://iccf-holland.org/
http://www.it-ebooks.info/


CHAPTER 10

Major Vim Improvements over vi

Vim’s improvements over vi are myriad, ranging from multiple color syntax definitions
to full-blown scripting. If vi is excellent (it is), Vim is amazing. In this chapter we discuss
how Vim fills in many features that users have complained were missing from vi. Some
of these include:

• Built-in help

• Startup and initialization options

• New motion commands

• Extended regular expressions

• Extended undo

• Customizing the executable

Built-in Help
As mentioned in the previous chapter, Vim comes with more than 100,000 lines of
documentation. Almost all of this is immediately available to you from Vim’s built-in
help facility. In its simplest form, you invoke the :help command. (This is interesting
because it exposes users to their first example of Vim’s multiple window editing.)

While this is nice, it presents a bit of a chicken-and-egg conundrum because the built-
in help requires a modicum of understanding of vi navigation techniques; for it to be
really effective, users must know how to jump back and forth in tags. We’ll give an
overview of help screen navigation here.

The :help command brings up something similar to:

*help.txt*      For Vim version 7.0.  Last change: 2006 May 07

                        VIM - main help file
                                                                         k
      Move around:  Use the cursor keys, or "h" to go left,            h   l
                    "j" to go down, "k" to go up, "l" to go right.       j
Close this window:  Use ":q[Enter]".

159

www.it-ebooks.info

http://www.it-ebooks.info/


   Get out of Vim:  Use ":qa![Enter]" (careful, all changes are lost!).

Jump to a subject:  Position the cursor on a tag (e.g. |bars|) and hit CTRL-].
   With the mouse:  ":set mouse=a" to enable the mouse (in xterm or GUI).
                    Double-click the left mouse button on a tag, e.g. |bars|.
        Jump back:  Type CTRL-T or CTRL-O (repeat to go further back).

Get specific help:  It is possible to go directly to whatever you want help
                    on, by giving an argument to the |:help| command.
                    It is possible to further specify the context:
                                                        *help-context*
                          WHAT                  PREPEND    EXAMPLE      ~
                      Normal mode command      (nothing)   :help x

Thankfully, Vim accommodates the potential navigation problem for beginners and
considerately opens with basic guidelines for navigation, and even tells you how to exit
the help screen. We recommend this as a starting point and urge you to spend time
exploring the help.

Once you are familiar with help, you can branch out by using tab completion in Vim’s
command line. For any command at the command prompt (:), pressing the Tab key
results in context-sensitive command-line completion. For example, the following:

:e /etc/termc[TAB]

on any Unix system would expand to:

:e /etc/termcap

The :e command implies that the command argument is a file, so command completion
looks for files that match the partial filename to complete the input.

But :help has its own context, covering the help topics. The partial topic string you
type is matched by a substring in any available Vim help topic. We strongly encourage
you to learn and use this feature. It saves time and reveals new and interesting features
you probably didn’t know about.

For example, suppose you want to know how to split a screen. Start with:

:help split

and press the Tab key. In the current session, the help command cycles through:
split( ); :split; :split_f; splitview; splitfind; 'splitright'; 'splitbelow';
g:netrw_browse_split; :dsplit; :vsplit; :isplit; :diffsplit; +vertsplit; and more.
To see help for any topic, press the ENTER  key when that topic is highlighted. You’ll
not only see what you’re probably looking for (:split), but you will also discover things
you didn’t realize you could do, such as :vsplit, the “vertical split” command.

Startup and Initialization Options
Vim uses different mechanisms to set up its environment at startup. It inspects
command-line options. It self-inspects (how was it invoked, and by what name?). There

160 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


are different compiled binaries to serve different needs (GUI versus text window). Vim
also uses a sequence of initialization files in which uncountable combinations of be-
haviors can be defined and modified. There are too many options to cover completely;
we will touch on some of the interesting ones. In the next sections, we discuss Vim’s
starting sequence along the following lines:

• Command-line options

• Behaviors associated to command name

• Configuration files (system-wide and per-user)

• Environment variables

This section introduces you to some of the ways to start Vim. For a more detailed
discussion of many more options, use the help command:

:help startup

Command-Line Options
Vim’s command-line options provide flexibility and power. Some options invoke extra
features, whereas others override and suppress default behavior. We will discuss the
command-line syntax as it would be used in a typical Unix environment. Single-letter
options begin with - (one hyphen), as in -b, which allows editing of binary files. Word-
length options begin with -- (two hyphens), as in --noplugin, which overrides the
default behavior of loading plugins. A command-line argument of two hyphens by
themselves tells Vim that the rest of the command line contains no options (this is a
standard Unix behavior).

Following the command-line options, you can optionally list one or more filenames to
be edited. (Actually, there is an interesting case where a filename can be a single “-”,
telling Vim that input comes from the standard input, stdin. This will be covered later,
but you are encouraged to look at uses for this on your own.)

The following is a partial list of Vim command-line options not available in vi (all vi
options are available in Vim):

-b
Edit in binary mode. This is self-explanatory and very cool. Editing binary files is
an acquired taste, but this is a powerful way to edit files not touchable by most
other tools. Users should read Vim’s help section on editing binary files.

-c command
command will be executed as an ex command. vi has this same option, but Vim
allows up to 10 -c instances in one command.

-C
Run Vim in compatible (vi) mode. For obvious reasons, this option would never
be in vi.

Startup and Initialization Options | 161

www.it-ebooks.info

http://www.it-ebooks.info/


-cmd command
command executes before vimrc files. This is the long form of the -c option.

-d
Start in diff mode. Vim performs a diff on two, three, or four files and sets options
making inspection of files differences simple (scrollbind, foldcolumn, etc.).

Vim uses the OS-available diff command, which is diff on Unix systems. The
Windows version offers a downloadable executable with which Vim can perform
the diff.

-E
Start in improved ex mode. For example, improved ex mode would use extended
regular expressions.

-F or -A
Farsi or Arabic modes, respectively. These require key and character maps to be
useful and draw the screen from right to left.

-g
Start gvim (GUI).

-m
Turn off the write option. Buffers will not be modifiable.

-o
Open all files in a separate window. Optionally an integer can specify the number
of windows to open. Files named on the command line fill that number of windows
only (the rest are in Vim buffers). If the specified number of windows exceeds the
listed files, Vim opens empty windows to satisfy the request count of windows.

-O
Like -o, but opens vertically split windows.

-y
Run Vim in easy mode. This sets options to a more intuitive behavior for beginners.
While “easy” may help the uninitiated, seasoned users will find this mode confus-
ing and irritating.

-z
Run in restricted mode. This basically turns off all external interfaces and prevents
access to the system features. For example, users can’t use !G!sort to sort from the
current line in the buffer to end-of-file; the filter sort will not be available.

The following is a series of related options to use a remote instance of a server Vim.
remote commands tell a remote Vim (which may or may not be executing on the same
machine) to edit a file or evaluate an expression in that remote server. The server com-
mands tell Vim which server to send to or can declare itself as a server. serverlist
simply lists available servers:

-remote file
-remote-silent file

162 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


-remote-wait file
-remote-send file
-servername name
-remote-expr expr
-remote-wait-silent file
-remote-tab
-remote-send keys
-remote-wait-silent file
-serverlist

For a more complete discussion of all command-line options, including the complete
vi set, refer to the section “Command-Line Syntax” on page 377.

Behaviors Associated to Command Name
Vim comes in two main flavors, graphical (using the X Window System under Unix
variants and native GUIs in other operating systems) and text, each of which can start
up with subsets of characteristics. Unix users simply use one of the commands in the
following list to get the desired behavior:

vim
Start the text-based Vim.

gvim
Start Vim in graphical mode. In many environments, gvim is a different binary file
of Vim with all of the GUI options turned on during compilation. Same as
vim -g. (In Unix environments, gvim requires the X Window System.)

view, gview
Start Vim or gvim in read-only mode. Same as vim -R.

rvim
Start Vim in restrictive mode. All external access to shell commands is disabled, as
well as the ability to suspend the edit session with the ^Z command.

rgvim
Same as rvim but for the graphical version.

rview
Analogous to view, but start in restricted mode. In restricted mode, users do not
have access to filters, outside enviroments, or OS features. Same as vim -Z (the
-R option invokes just the read-only effect described previously).

rgview
Same as rview but for the graphical version.

evim, eview
Use “easy” mode for editing or read-only viewing. Vim sets options and features
so it behaves in a more intuitive way for those who are not familiar with the Vim

Startup and Initialization Options | 163

www.it-ebooks.info

http://www.it-ebooks.info/


paradigm. Same as vim -y. Expert users probably won’t find this mode easy because
they’re already used to standard vi behavior.

Note there is no analogous gXXX version of these commands, because gvim is
ostensibly thought to be already easy, or at least intuitive to learn, with predictable
point-and-click behavior.

vimdiff, gvimdiff
Start in “diff” mode and perform a diff on the input files. This is covered in depth
later in the section “What’s the Difference?” on page 294.

ex, gex
Use the old line-editing ex mode. Useful in scripts. Same as vim -e.

Windows users can access a similar choice of Vim versions in the program list (Start
menu).

System and User Configuration Files
Vim looks for initialization cues in a special sequence. It executes the first set of in-
structions it finds (either in the form of an environment variable or in a file) and begins
editing. So, the first element of the following list that is encountered is the only element
of the list that is executed. The sequence follows:

1. VIMINIT. This is an environment variable. If it is nonempty, Vim executes its content
as an ex command.

2. User vimrc files. The vimrc (Vim resource) initialization file is a cross-platform
concept, but because of subtle operating system and platform differences, Vim
looks for it in different places in the following order:

$HOME/.vimrc (Unix, OS/2, and Mac OS X)
s:.vimrc (Amiga)
home:.vimrc (Amiga)
$VIM/.vimrc (OS/2 and Amiga)
$HOME/_vimrc (DOS and Windows)
$VIM/_vimrc (DOS and Windows)

3. exrc option. If the Vim exrc option is set, Vim looks for the three additional config
files: [._]vimrc; [._]vimrc; and [._]exrc.

The vimrc file is a good place to configure Vim’s editing characteristics. Virtually any
Vim option can be set or unset in this file, and it is particularly suited to setting up
global variables and defining functions, abbreviations, key mappings, etc. Here are a
few things to know about the vimrc file:

• Comments begin with a double quote ("), and the double quote can be anywhere
in the line. All text after and including the double quote is ignored.

• ex commands can be specified with or without a colon. For example,
set autoindent is identical to :set autoindent.

164 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


• The file is much more manageable if you break large sets of option definitions into
separate lines. For example:

set terse sw=1 ai ic wm=15 sm nows ruler wc=<Tab> more

is equivalent to:

set terse     " short error and info messages 
set shiftwidth=1
set autoindent
set ignorecase
set wrapmargin=15
set nowrapscan  " don't scan past end or top of file in searches
set ruler
set wildchar=<TAB>
set more

Notice how much more readable the second set of commands is. The second
method is also much easier to maintain through deletions, insertions, and tempo-
rarily commenting out lines when debugging settings in the configuration file. For
example, should you want to temporarily disable line numbering in the startup
configuration, you simply insert the double quote (") at the beginning of the set
number line in your configuration file.

Environment Variables
Many environment variables affect Vim’s startup behavior and even some edit-session
behavior. These are mostly transparent and handled with defaults if not configured.

How to set environment variables

The command environment you have when you log in (called the shell in Unix) sets
variables to reflect or control its behavior. Environment variables are especially pow-
erful because they affect programs invoked within the command environment. The
following instructions are not specific to Vim; they can be used to set any environment
variables you want set in the command environment.

Windows
To set an environment variable:

1. Bring up the control panel.

2. Double-click System.

3. Click the Advanced tab.

4. Click the Environment Variables button.

The result is a window divided into two environment variable areas, User and
System. Novices shouldn’t modify the System environment variables. In the User
area, you can set environment variables related to Vim and make them persist
across login sessions.

Startup and Initialization Options | 165

www.it-ebooks.info

http://www.it-ebooks.info/


Unix/Linux Bash and other Bourne shells
Edit the appropriate shell configuration file (such as .bashrc for Bash users) and
insert lines resembling:

VARABC=somevalue
VARXYZ=someothervalue
MYVIMRC=myfavoritevimrcfile
export VARABC VARXYZ MYVIMRC

The order of these lines is irrelevant. The export statement just makes variables
visible to programs that run in the shell, and thus turns them into environment
variables. The value of exported variables can be set before or after exporting them.

Unix/Linux C shells
Edit the appropriate shell configuration file (such as .cshrc) and insert lines
resembling the following:

setenv VARABC somevalue
setenv VARXYZ someothervalue
setenv MYVIMRC myfavoritevimrcfile

Environment variables relevant to Vim

The following list shows most of Vim’s environment variables and their effects.

The Vim -u command-line option overrides Vim’s environment variables and goes di-
rectly to the specified initialization file. The -u does not override non-Vim environment
variables:

SHELL
Specifies which shell or external command interpreter Vim uses for shell com-
mands (!!, :!, etc.). In MS-DOS, if SHELL is not set, the COMSPEC environment
variable is used instead.

TERM
Sets Vim’s internal term option. This is somewhat unnecessary, because the editor
sets its terminal itself as it deems appropriate. In other words, Vim probably knows
what the terminal is better than a predefined variable.

MYVIMRC
Overrides Vim’s search for initialization files. If MYVIMRC has a value when starting,
Vim assumes the value is the name of an initialization file and, if the file exists,
takes initial settings from it. No other file is consulted (see the search sequence in
the previous section).

VIMINIT
Specifies ex commands to execute when Vim starts. Define multiple commands by
separating them with vertical bars (|).

EXINIT
Same as VIMINIT.

166 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


VIM
Contains the path of a system directory where standard Vim installation informa-
tion is found (for information only and not used by Vim).

If more than one version of Vim exists on a machine, VIM will likely
reflect different values depending upon which version the user
started. For example, on one author’s machine, the Cygwin version
sets the VIM environment variable to /usr/share/vim, whereas the
vim.org package sets it to C:\Program Files\Vim.

This is important to know if you are making changes to Vim files,
as changes may not take effect if you edit the wrong files!

VIMRUNTIME
Points to Vim support files, such as online documentation, syntax definitions, and
plug-in directories. Vim typically figures this out on its own. If the user sets the
variable—for example, in the vimrc file—it can cause errors if a newer version of
Vim is installed because the user’s personal VIMRUNTIME variable may point to an
old, nonexistent, or invalid location.

New Motion Commands
Vim provides all vi movement or motion commands, most of which are listed in
Chapter 3, and adds several others, summarized in Table 10-1.

Table 10-1. Motion commands in Vim

Command Description

<C-End> Go to the end of the file, i.e., the last character of the last line of the file. If a count is given, go
to the last character of the line count.

<C-Home> Go to the first nonwhitespace character of the first line of the file. This differs from <C-End>
because <C-Home> does not move the cursor to whitespace.

count% Go to the line count percent into the file, putting the cursor on the first nonblank line. It’s
important to note that Vim bases its calculation on the number of lines in the file, not the total
character count. This may not seem important, but consider an example of a file containing
200 lines, of which the first 195 contain 5 characters (for example, prices such as $4.98), and
the last four lines contain 1,000 characters. In Unix, accounting for the newline character, the
file would contain approximately:

(195 * (5 + 1)) (The number of characters in the first 5-character lines)

+ 2 + (4 * (1000 + 1)) (The number of characters in the 1,000-character lines)

or 5,200 characters. A true 50% count would place the cursor on line 96, and Vim’s 50% motion
command would place the cursor on line 100.

:go n

n go

Go to the nth byte in the buffer. All characters, including end-of-line characters, are counted.

New Motion Commands | 167

www.it-ebooks.info

http://www.it-ebooks.info/


Visual Mode Motion
Vim lets users define selections visually and perform editing commands on the visual
selection. This is similar to what many users see in graphical editors where they high-
light areas by clicking and dragging the mouse. What Vim offers with its visual mode
is the convenience of seeing the selection on which work is done and all of the powerful
Vim commands with which to do work on the visually selected text. This lets you do
much more sophisticated work on highlighted text than the traditional cut and paste
actions in less sophisticated editors.

You can select a visual area in Vim in the same manner as other editors, by clicking and
dragging the mouse. But Vim also lets you use its powerful motion commands and
some special visual mode commands to define the visual selection.

For example, you can type v in normal mode to start visual mode. Once you are in
visual mode, any motion commands move the cursor and highlight text as the cursor
moves to a new position. So, the “next word” command (w) in visual mode moves the
cursor to the next word and highlights the selected text. Additional movements extend
the selected region appropriately.

In visual mode, Vim uses some specialized commands with which you conveniently
extend the selected text by selecting the text object around the cursor. For example,
the cursor can be within a “word,” and at the same time be within a “sentence,” and
also be within a “paragraph.” Vim lets you add to the visual selection with commands
that extend the highlighted region to a text object. To visually select a word, you can
use aw (when in visual mode).

Vim uses the following motion commands by taking advantage of “visual mode,” which
highlights lines and characters in the buffer in order to provide visual cues about what
text will be targeted by subsequent Vim actions. You can highlight visual areas of the
buffer in several ways. In text-based mode, simply type v to toggle visual mode on and
off. When on, visual mode selects and highlights the buffer as the cursor moves. In
gvim, just click and drag the mouse across the desired region. This sets Vim’s visual flag.

Table 10-2 shows some of Vim’s visual mode motion commands.

Table 10-2. Visual mode motion commands in Vim

Command Description

countaw, countaW Select count words. Intervening whitespace is included. This is slightly different from
iw (see next entry). Lowercase w looks for punctuation-delimited words, whereas up-
percase W looks for whitespace-delimited words.

countiw, countiW Select count words. Add words but not whitespace. Lowercase w looks for punctuation-
delimited words, whereas uppercase W looks for whitespace-delimited words.

as, is Add sentence, or inner sentence.

ap, ip Add paragraph, or inner paragraph.

168 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


For a more detailed discussion of text objects and how they are used in visual mode,
use the help command:

:help text-objects

Extended Regular Expressions
Of all the clones, Vim provides the richest set of regular expression matching facilities.
Much of the descriptive text in the following list is borrowed from the Vim
documentation:

\|
Indicates alternation, house\|home.    

\+
Matches one or more of the preceding regular expression.

\=
Matches zero or one of the preceding regular expression.

\{n,m}
Matches n to m of the preceding regular expression, as much as possible. n and
m are numbers between 0 and 32,000. Vim requires only the left brace to be pre-
ceded by a backslash, not the right brace.

\{n}
Matches n of the preceding regular expression.

\{n,}
Matches at least n of the preceding regular expression, as much as possible.

\{,m}
Matches 0 to m of the preceding regular expression, as much as possible.

\{}
Matches 0 or more of the preceding regular expression, as much as possible (same
as *).

\{-n,m}
Matches n to m of the preceding regular expression, as few as possible.

\{-n}
Matches n of the preceding regular expression.

\{-n,}
Matches at least n of the preceding regular expression, as few as possible.

\{-,m}
Matches 0 to m of the preceding regular expression, as few as possible.

\i
Matches any identifier character, as defined by the isident option.

Extended Regular Expressions | 169

www.it-ebooks.info

http://www.it-ebooks.info/


\I
Like \i, but excluding digits.

\k
Matches any keyword character, as defined by the iskeyword option.  

\K
Like \k, but excluding digits.

\f
Matches any filename character, as defined by the isfname option.

\F
Like \f, but excluding digits.

\p
Matches any printable character, as defined by the isprint option.

\P
Like \p, but excluding digits.

\s
Matches a whitespace character (exactly a space or a tab).  

\S
Matches anything that isn’t a space or a tab.

\b
Backspace.  

\e
Escape.  

\r
Carriage return.  

\t
Tab.  

\n
Reserved for future use. Eventually, it will be used for matching multiline patterns.
See the Vim documentation for more details.

~
Matches the last given substitute (i.e., replacement) string.

\(…\)
Provides grouping for *, \+, and \=, as well as making matched subtexts available
in the replacement part of a substitute command (\1, \2, etc.).

\1
Matches the same string that was matched by the first subexpression in \( and
\). For example, \([a-z]\).\1 matches ata, ehe, tot, etc. \2, \3, and so on may be
used to represent the second, third, and so on subexpressions.

170 | Chapter 10: Major Vim Improvements over vi

www.it-ebooks.info

http://www.it-ebooks.info/


The isident, iskeyword, isfname, and isprint options define the characters that appear
in identifiers, keywords, and filenames, and that are printable. Use of these options
makes regular expression matching very flexible.     

Customizing the Executable
For most users, the default Vim suffices nicely. Today’s computers provide enough
processing power (memory and processing cycles) for the full-featured Vim executable.
You get all of Vim’s extended features with the confidence of good performance. How-
ever, in some instances, environment or circumstance may dictate a more stripped
down Vim.

Users may need Vim to take up a minimal footprint, for example, on a handheld device
running Linux that has limited memory. Users may also have no use for compiled-in
features such as spellcheck (because they may be programmers with no interest in fea-
tures that mimic word processing) or perl (because perl may not be installed on their
machines).

It’s much easier to live with the available features than to reconfigure, recompile, and
reinstall Vim with all new options, just to add missing features.

Customizing the Executable | 171

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 11

Multiple Windows in Vim

By default, Vim edits all its files in a single window, showing just one buffer at a time
as you move between files or to different parts of a single file. But Vim also offers multi-
window editing, which can make complex editing tasks easier. This is different from
starting multiple instances of Vim on a graphical terminal. This chapter covers the use
of multiple windows in a single instance of a running Vim process (which we’ll call a
session).

You can initiate your editing session with multiple windows or create new windows
after a session starts. You can add windows to your edit session up to the limit imposed
by sanity, and you can delete them back to a single edit window.

Here are some examples where multiple windows make your life easier:

• Editing a number of files that need to be formatted the same way, where you would
like to compare them visually as you go along

• Cutting and pasting text quickly and repeatedly among multiple files or multiple
parts of a single file

• Displaying one part of a file for reference, to facilitate work elsewhere in the same
file

• Comparing two versions of a file

Vim offers many window-managing convenience features, including the ability to:

• Split windows horizontally or vertically

• Navigate from one window to another and back again quickly

• Copy and move text to and from multiple windows

• Move and reposition windows

• Work with buffers, including hidden buffers (to be described later)

• Use external tools such as the diff command with multiple windows

In this chapter, we guide you through the multiwindow experience. We show you how
to start a multiwindow session, discuss features and tips for the edit session, and

173

www.it-ebooks.info

http://www.it-ebooks.info/


describe how to exit your work and ensure that all your work is properly saved (or
abandoned, if you wish!). The following topics are covered:

• Initializing or starting multiwindow editing

• Multiwindow :ex commands

• Moving the cursor from window to window

• Moving windows around the display

• Resizing windows

• Buffers and their interaction with windows

• Tabbed editing (like the tabs offered by modern Internet browsers and dialog
boxes)

• Closing and quitting windows

Initiating Multiwindow Editing
You can initiate multiwindow editing when you start Vim, or  you can split windows
within your editing session. Multiwindow editing is dynamic in Vim, allowing you to
open, close, and navigate among multiple windows at any point, from most contexts.

Multiwindow Initiation from the Command Line (Shell)
By default, Vim opens only one window for a session, even if you specify more than
one file. While we don’t know for sure why Vim would not open multiple windows for 
multiple files, it may be because using just a single window is consistent with vi be-
havior. Multiple files occupy multiple buffers, with each file in its own buffer. (Buffers
are discussed shortly.)

To open multiple windows from the command line, use Vim’s -o option. For example:

      $ Vim -o file1 file2

This opens the edit session with the display horizontally split into two equal-sized
windows, one for each file (see Figure 11-1). For each file named on the command line,
Vim tries to open a window for editing. If Vim cannot split the screen into enough
windows for the files, the first files listed in the command-line arguments get windows,
while the remaining files are loaded into buffers not visible (but still available) to the
user.

Another form of the command line preallocates the windows by appending a number
n to -o:

      $ Vim -o5 file1 file2

This opens a session with the display horizontally split into five equal-sized windows,
the topmost of which contains file1 and the second of which contains file2 (see
Figure 11-2).

174 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


When Vim creates more than one window, its default behavior is to
create a status line for each window (whereas the default behavior for a
single window is not to display any status line). You can control this
behavior with Vim’s laststatus option, e.g.:

:set laststatus=1

Set laststatus to 2 to always see a status line for each window, even in
single window mode. (It is best to set this in your .vimrc file.)

Because window size affects readability and usability, you may want to control Vim’s
limits for window sizes. Use Vim’s winheight and winwidth options to define reasonable
limits for the current window (other windows may be resized to accommodate it).

Multiwindow Editing Inside Vim
You can initiate and modify the window configuration from within Vim. Create a new
window with the :split command. This breaks the current window in half, showing
the same buffer in both halves. Now you can navigate independently in each window
on the same file.

Figure 11-1. Results of “Vim -o5 file1 file2”

Initiating Multiwindow Editing | 175

www.it-ebooks.info

http://www.it-ebooks.info/


There are convenience key sequences for many of the commands in this
chapter. In this case, for instance, ̂ Ws splits a window. (All Vim window-
related commands begin with ^W, with the “W” being mnemonic for
“window.”) For the purposes of discussion, we show only the
command-line methods because they provide the added power of op-
tional parameters that customize the default behavior. If you find your-
self using commands routinely, you can easily find the corresponding
key sequence in the Vim documentation, as described in “Built-in Help”
on page 159.

Similarly, you can create a new, vertically separated edit window with the :vsplit
command (see Figure 11-3).

For each of these methods, Vim splits the window (horizontally or vertically), and since
no file was specified on the :split command line, you end up editing the same file with
two views or windows.

Don’t believe you’re editing the same file at the same time? Split the edit
window and scroll each window so that each shows the same area of
the file. Make changes. Watch the other window. Magic.

Figure 11-2. Results of “Vim -o5 file1 file2”

176 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Why or how is this useful? One common use by this author, when writing shell scripts
or C programs, is to code a block of text that describes the program’s usage. (Typically,
the program will display the block when passed a --help option.) I split the display so
that one window displays the usage text, and I use this as a template to edit the code
in the other window that parses all the options and command-line arguments described
in the usage text. Often (almost always) this code is complex and ends up far enough
from the usage text that I can’t display everything I want in a single window.

If you want to edit or browse another file without losing your place in your current file,
provide the new file as an argument to your :split command. For instance:

:split otherfile

The next section describes splitting and unsplitting windows in more detail.

Opening Windows
This section goes into depth about how to get the precise behavior you want when you
split your window.

New Windows
As discussed previously, the simplest way to open a new window is to issue :split (for
a horizontal division) or :vsplit (for a vertical division). A more in-depth discussion
of the many commands and variations follows. We also include a command synopsis
for quick reference.

Options During Splits
The full :split command to open a new horizontal window is:

:[n]split [++opt] [+cmd] [file]

Figure 11-3. Vertically split window

Opening Windows | 177

www.it-ebooks.info

http://www.it-ebooks.info/


where:

n
Tells Vim how many lines to display in the new window, which goes at the top.

opt
Passes Vim option information to the new window session (note that it must be
preceded by two plus signs).

cmd
Passes a command for execution in the new window (note that it must be preceded
by a single plus sign).

file
Specifies a file to edit in the new window.

For example, suppose you are editing a file and want to split the window to edit another
file named otherfile. You want to ensure that the session uses a fileformat of unix
(which ensures the use of a line feed to end each line instead of a carriage return and
line feed combination). Finally, you want the window to be 15 lines tall. Enter:

:15split ++fileformat=unix otherfile

To simply split the screen, showing the same file in both windows and using all the
current defaults, you can use the key commands ^Ws, ^WS, or ^W^S.

If you want windows to always split equally, set the equalalways option,
preferably putting it in your .vimrc to make it persistent over sessions.
By default, setting equalalways splits both horizontal and vertical win-
dows equally. Add the eadirection option (hor, ver, both, for horizontal,
vertical, or both, respectively) to control which direction splits equally.

The following form of the :split command opens a new horizontal window as before,
but with a slight nuance:

:[n]new [++opt] [+cmd] [file]

In addition to creating the new window, the WinLeave, WinEnter, BufLeave, and
BufEnter autocommands execute. (For more information on autocommands, see the
section “Autocommands” on page 206.)

Along with the horizontal split commands, Vim offers analogous vertical ones. So, for
example, to split a vertical window, instead of :split or :new, use :vsplit and :vnew
respectively. The same optional parameters are available as for the horizontal split
commands.

There are two horizontal split commands without vertical cousins:

178 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


:sview filename
Splits the screen horizontally to open a new window and sets the readonly for that
buffer. :sview requires the filename argument.

:sfind [++opt] [+cmd] filename
Works like :split, but looks for the filename in the path. If Vim does not find the
file, it doesn’t split the window.

Conditional Split Commands
Vim lets you specify a command that causes a window to open if a new file is
found. :topleft cmd tells Vim to execute cmd and display a new window with the cursor
at the top left if cmd opens a new file. The command can produce three different results:

• cmd splits the window horizontally, and the new window spans the top of the Vim
window.

• cmd splits the window vertically, and the new window spans the left side of the
Vim window.

• cmd causes no split but instead positions the cursor at the top left of the current
window.

Window Command Summary
Table 11-1 summarizes the commands for splitting windows.

Table 11-1. Summary of window commands

ex command vi command Description
:[n]split [++opt] [+cmd] [file] ^Ws

^WS

^W^S

Split the current window into two from side to side, placing
the cursor in the new window. The optional file argument
places that file in the newly created window. The windows
are created as equal in size as possible, determined by free
window space.

:[n]new [++opt] [+cmd] ^Wn

^W^N

Same as :split, but start the new window editing an empty
file. Note that the buffer will have no name until one is
assigned.

:[n]sview [++opt] [+cmd] [file]  Read-only version of :split.

:[n]sfind [++opt] [+cmd] [file]  Split window and open file (if specified) in the new window.
Look for file in the path.

:[n]vsplit [++opt] [+cmd] [file] ^Wv

^W^V

Split current window into two from top to bottom and open
file (if specified) in the new window.

:[n]vnew [++opt] [+cmd]  Vertical version of :new.

Opening Windows | 179

www.it-ebooks.info

http://www.it-ebooks.info/


Moving Around Windows (Getting Your Cursor from Here to
There)
It’s easy to move from window to window with a mouse in both gvim and Vim. gvim
supports clicking with the mouse by default, whereas in Vim you can enable the
behavior with the mouse option. A good default setting for Vim is :set mouse=a, to
activate the mouse for all uses: command line, input, and navigation.

If you don’t have a mouse, or prefer to control your session from the keyboard, Vim
provides a full set of navigation commands to move quickly and accurately among
session windows. Happily, Vim uses the mnemonic prefix keystroke ̂ W consistently for
window navigation. The keystroke that follows defines the motion or other action, and
should be familiar to experienced vi and Vim users because they map closely to the
same motion commands for editing.

Rather than describe each command and its behavior, we will consider an example.
The command-synopsis table should then be self-explanatory.

To move from the current Vim window to the next one, type CTRL-W  j  (or CTRL-
W  <down>  or CTRL-W  CTRL-J ). The CTRL-W  is the mnemonic for “window”
command, and the j is analogous to Vim’s j command, which moves the cursor to the
next line.

Table 11-2 summarizes the window navigation commands.

As with many Vim and vi commands, these can be multiply executed
by prefixing them with a count. For example, 3^Wj tells Vim to jump to
the third window down from the current window.

Table 11-2. Window navigation commands

Command Description

CTRL-W  <DOWN>

CTRL-W  CTRL-J

CTRL-W  j

Move to the next window down.

Note that this command does not cycle through the windows; it simply
moves down to the next window below the current window. If the cursor is
in a window at the bottom of the screen, this command has no effect. Also,
this command bypasses adjacent windows on its “way down”; for example,
if there is a window to the right of the current window, the command does
not jump across to the adjacent window. (Use CTRL-W  CTRL-W  to cycle
through windows.)

CTRL-W  <UP>

CTRL-W  CTRL-K

CTRL-W  k

Move to the next window up. This is the opposite-direction counterpart to
the CTRL-W  j  command.

CTRL-W  <LEFT>

CTRL-W  CTRL-H

Move to the window to the left of the current window.

180 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Command Description

CTRL-W  h

CTRL-W  <BS>

CTRL-W  <RIGHT>

CTRL-W  CTRL-L

CTRL-W  l

Move to the window to the right of the current window.

CTRL-W  w

CTRL-W  CTRL-W

Move to the next window below or to the right. Note that this command,
unlike CTRL-W  j , will cycle through all of the Vim windows. When the
lowermost window is reached, Vim restarts the cycle and moves to the top
leftmost window.

CTRL-W Move to next window above or to the left. This is the upward counterpart to
the CTRL-W  w  command.

CTRL-W  t

CTRL-W  CTRL-T

Move cursor to the top leftmost window.

CTRL-W  b

CTRL-W  CTRL-B

Move cursor to the bottom rightmost window.

CTRL-W  p

CTRL-W  CTRL-P

Move to the previous (last accessed) window.

Mnemonic Tips
t and b are mnemonic for top and bottom windows.

In keeping with the convention that lowercase and uppercase implement opposites,
CTRL-W  w  moves you through the windows in the opposite direction from CTRL-
W  W .

The Control characters do not distinguish between uppercase and lowercase; in other
words, pressing the Shift key while pressing a CTRL-  key itself has no effect. However,
an upper/lowercase distinction is recognized for the regular keyboard key you press
afterward.

Moving Windows Around
You can move windows two ways in Vim. One way simply swaps the windows on the
screen. The other way changes the actual window layouts. In the first case, window
sizes remain constant while windows change position on the screen. In the second case,
windows not only move but are resized to fill the position to which they’ve moved.

Moving Windows Around | 181

www.it-ebooks.info

http://www.it-ebooks.info/


Moving Windows (Rotate or Exchange)
Three commands move windows without modifying layout. Two of these rotate the
windows positionally in one direction (to the right or down) or the other (to the left or
up), and the other one exchanges the position of two possibly nonadjacent windows.
These commands operate only on the row or column in which the current window lives.

CTRL-W  r  rotates windows to the right or down. Its complement is CTRL-W  R ,
which rotates windows in the opposite direction.

An easier way to imagine how these work is to think of a row or column of Vim windows
as a one-dimensional array. CTRL-W  r  would shift each element of the array one
position to the right, and move the last element into the vacated first position. CTRL-
W  R  simply moves the elements the other direction.

If there are no windows in a column or row that aligns with the current window, this
command does nothing.

After Vim rotates the windows, the cursor remains in the window from which the rotate
command executed; thus, the cursor moves with the window.

CTRL-W  x  and CTRL-W  CTRL-X  let you exchange two windows in a row or column
of windows. By default, Vim exchanges the current window with the next window, and
if there is no next window, Vim tries to exchange with the previous window. You can
exchange with the nth next window by prepending a count before the command. For
example, to switch the current window with the third next window, use the command
3^Wx.

As with the two previous commands, the cursor stays in the window from which the
exchange command executes.

Moving Windows and Changing Their Layout
Five commands move and reflow the windows: two move the current window to a full-
width top or bottom window, two move the current window to a full-height left or right
window, and the fifth moves the current window to another existing tab. (See the sec-
tion “Tabbed Editing” on page 191.) The first four commands bear familiar mnemonic
relationships to other Vim commands; for instance, CTRL-W  K  maps to the tradi-
tional notion of k as “up.” Table 11-3 summarizes these commands.

Table 11-3. Commands to move and reflow windows

Command Description

^WK Move the current window to the top of the screen, using the full width of the screen.

^WJ Move the current window to the bottom of the screen, using the full width of the screen.

^WH Move the current window to the left of the screen, using the full height of the screen.

^WL Move the current window to the right of the screen, using the full height of the screen.

^WT Move the current window to a new existing tab.

182 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


It is difficult to describe the exact behavior of these layout commands. After the move
and expansion of the window to the full height or width of the screen, Vim reflows the
windows in a reasonable way. The behavior of the reflow can also be influenced by
some of the windows options settings.

Window Move Commands: Synopsis
Tables 11-4 and 11-5 summarize the commands introduced in this section.

Table 11-4. Commands to rotate window positions

Command Description

^Wr

^W^R

Rotate windows down or to the right.

^WR Rotate windows up or to the left.

^Wx

^W^X

Swap positions with the next window, or if issued with a count n, swap with nth next window.

Table 11-5. Commands to change position and layout

Command Description

^WK Move window to top of screen and use full width. The cursor stays with the moved window.

^WJ Move window to bottom of screen and use full width. The cursor stays with the moved window.

^WH Move window to left of screen and use full height. The cursor stays with the moved window.

^WL Move window to right of screen and use full height. The cursor stays with the moved window.

^WT Move window to new tab. The cursor stays with the moved window. If the current window is
the only window in the current tab, no action is taken.

Resizing Windows
Now that you’re more familiar with Vim’s multiwindowing features, you need a little
more control over them. This section addresses how you can change the size of the
current window, with, of course, effects on other windows in the screen. Vim provides
options to control window sizes and window sizing behavior when opening new win-
dows with split commands.

If you’d rather control window sizes sans commands, use gvim and let the mouse do
the work for you. Simply click and drag window boundaries with the mouse to resize.
For vertically separated windows, click the mouse on the vertical separator of | char-
acters. Horizontal windows are separated by their status lines.

Resizing Windows | 183

www.it-ebooks.info

http://www.it-ebooks.info/


Window Resize Commands
As you’d expect, Vim has vertical and horizontal resize commands. Like the other win-
dow commands, these all begin with CTRL-W  and map nicely to mnemonic devices,
making them easy to learn and remember.

CTRL-W  =  tries to resize all windows to equal size. (This is also influenced by the
current values of winheight and windwidth, discussed in the following section.) If the
available screen real estate doesn’t divide equally, Vim sizes the windows to be as close
to equal as possible.

CTRL-W  -  decreases the current window height by one line. Vim also has an ex com-
mand that lets you decrease the window size explicitly. For example, the command
resize -4 decreases the current window by four lines and gives those lines to the win-
dow below it.

It’s interesting to note that Vim obediently decreases your window size
even if you are not in a multiple window edit session. While it may seem
counterintuitive at first, the side effect is that Vim decreases the window
as requested and the vacated screen real estate is allocated to the
command-line window. Typically, the command-line window always
uses a single line, but there are reasons to use a command-line window
larger than one line high. (The most common reason we know of is to
provide enough space to let Vim display complete command-line status
and feedback without intermediate prompts.) That said, it’s best to use
the :resize command to resize your current window, and to use the
winheight option to size your command window.

CTRL-W  +  increases the current window by one line. The :resize +n command in-
creases the current window size by n lines. Once the window’s maximum height is
reached, further use of this command has no effect.

One of the authors’ favorite ways to use the CTRL-W  +  and CTRL-
W  -  commands is by mapping each to keys, both keys adjacent. The
+  key is a convenient choice. Though it is already the Vim “up” com-
mand, that behavior is redundant and little used by veteran Vim users
(who use the k  command instead). Therefore, this key is a good can-
didate to map to something else, in this case CTRL-W  + . Immediately
to that key’s left (on most standard keyboards) is the - . But since it is
unshifted and the +  is shifted, map the shifted key, _ , to CTRL-W  - .
Now you have two convenient side-by-side keys to easily and quickly
expand and contract your current window horizontally.

:resize n sets the horizontal size of the current window to n lines. It sets an absolute
size, in contrast to the previously described commands that make a relative change.

184 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


zn sets the current window height to n lines. Note that n is not optional! Omitting it
results in the vi/Vim command z, which moves the cursor to the top of the screen.

CTRL-W  <  and CTRL-W  >  decrease and increase the window width, respectively.
Think of the mnemonic device of “shift left” (<<) and “shift right” (>>) to associate these
commands to their function.

Finally, CTRL-W  |  resizes the current window to the widest size possible (by default).
You can also specify explicitly how to change the window width with vertical
resize n. The n defines the window’s new width.

Window Sizing Options
Several Vim options influence the behavior of the resize commands described in the
previous section.

winheight and winwidth define the minimal window height and width, respectively,
when a window becomes active. For example, if the screen accommodates two equal-
sized windows of 45 lines, the default Vim behavior is to split them equally. If you were
to set winheight to a value larger than 45—say, 60—Vim will resize the window to
which you move each time to 60 lines, and will resize the other window to 30. This is
handy for editing two files simultaneously; you automatically increase the allocated
window size for maximum context when you switch from window to window and from
file to file.

equalalways tells Vim to always resize windows equally after splitting or closing a win-
dow. This is a good option to set in order to ensure equitable allocation of windows as
you add and delete them.

eadirection defines directional jurisdiction for equalalways. The possible values hor,
ver, and both tell Vim to make windows of equal size horizontally, vertically, or both,
respectively. The resizing applies each time you split or delete a window.

cmdheight sets the command line height. As described previously, decreasing a win-
dow’s height when there is only one window increases the command-line height. You
can keep the command line the height you want using this option.

Finally, winminwidth and winminheight tell Vim the minimum width and height to size
windows. Vim considers these to be hard values, meaning that windows will never be
allowed to get smaller than these values.

Resizing Command Synopsis
Table 11-6 summarizes the ways to resize windows. Options are set with the :set
command.

Resizing Windows | 185

www.it-ebooks.info

http://www.it-ebooks.info/


Table 11-6. Window resizing commands

Command or option Description

^W= Resize all windows equally. The current window honors the settings of the
winheight and winwidth options.

:resize -n
^W-

Decrease the current window size. The default amount is one line.

:resize +n
^W+

Increase the current window size. The default amount is one line.

:resize n
^W^_

^W_

Set the current window height. The default is to maximize window height (unless
n is specified).

zn  <ENTER> Set the current window height to n.

^W< Increase the current window width. The default amount is one column.

^W> Decrease the current window width. The default amount is one column.

:vertical resize n
^W|

Set the current window width to n. The default is to make window as wide as
possible.

winheight option When entering or creating a window, set its height to at least the specified value.

winwidth option When entering or creating a window, set its width to at least the specified value.

equalalways option When the number of windows changes, either by splitting or closing windows,
resize them to be the same size.

eadirection option Define whether Vim resizes windows equally vertically, horizontally, or both.

cmdheight option Set the command line height.

winminheight option Define the minimum window height, which applies to all windows created.

winminwidth option Define the minimum window width, which applies to all windows created.

Buffers and Their Interaction with Windows
Vim uses buffers as containers for work. Understanding buffers completely is an ac-
quired skill; there are many commands for manipulating and navigating them. How-
ever, it is worthwhile to familiarize yourself with some of the buffer basics and under-
stand how and why they exist throughout a Vim session.

A good starting point is to open up a few windows editing different files. For example,
start Vim by opening file1. Then, within the session, issue :split file2 and
then :split file3. You should now have three open files in three separate Vim
windows.

Now use the commands :ls, :files, or :buffers to list the buffers. You should see
three lines, each numbered and including the filenames, along with additional infor-
mation. These are Vim’s buffers for this session. There is one buffer for each file and
each buffer has a unique, nonchanging associated number. In this example, file1 is in
buffer 1, file2 is in buffer 2, etc.

186 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Additional information on each buffer can be displayed if you append an exclamation
point (!) after any of the commands.

To the right of each buffer number are status flags. These flags describe the buffers as
shown in Table 11-7.

Table 11-7. Status flags describing buffers

Code Description

u Unlisted buffer. This buffer is not listed unless you use the ! modifier. To see an example
of an unlisted buffer, type :help. Vim splits the current window to include a new win-
dow in which the built-in help appears. The plain :ls command will not show the help
buffer, but :ls! includes it.

% or (mutually
exclusive) #

% is the buffer for the current window. # is the buffer to which you would switch with
the :edit # command.

a or (mutually
exclusive) h

a indicates an active buffer. That means the buffer is loaded and visible. h indicates a
hidden buffer. The hidden buffer exists but is not visible in any window.

- or (mutually
exclusive) =

- means that a buffer has the modifiable option turned off. The file is read-only. = is
a read-only buffer that cannot be made modifiable (for instance, because you don’t
have filesystem privileges to write to the file).

+ or (mutually
exclusive) x

+ indicates a modified buffer. x is a buffer with read errors.

The u flag is an interesting way to know what help file you are viewing
in Vim. For example, had you issued :help split followed by :ls!, you
would see that the unlisted buffer refers to the built-in Vim help file,
windows.txt.

Now that you can list Vim buffers, we can talk about them and their various uses.

Vim’s Special Buffers
Vim uses some buffers for its own purposes, called special buffers. For instance, the
help buffers described in the previous section are special. Typically, these buffers cannot
be edited or modified.

Here are four examples of Vim special buffers:

quickfix
Contains the list of errors created by your commands (which can be viewed
with :cwindow) or the location list (which can be viewed with the :lwindow com-
mand). Do not edit the contents of this buffer! It helps programmers iterate through
the edit-compile-debug cycle. See Chapter 14.

help
Contains Vim help files, described earlier in the section “Built-in Help” on page
159. :help loads these text files into this special buffer.

Buffers and Their Interaction with Windows | 187

www.it-ebooks.info

http://www.it-ebooks.info/


directory
Contain directory contents, that is, a list of files for a directory (and some helpful
extra command hints). This is a handy tool within Vim that lets you move around
in this buffer as you would in a regular text file and select files under the cursor for
editing by pressing ENTER .

scratch
These buffers contain text for general purposes. This text is expendable and can
be deleted at any time.

Hidden Buffers
Hidden buffers are Vim buffers that are not currently displayed in any window. This
makes it easier to edit multiple files, considering the limited screen real estate for mul-
tiple windows, without constantly retrieving and rewriting files. For example, imagine
you are editing the myfile file but wish to momentarily edit some other file,
myOtherfile. If the hidden option is set, you can edit myOtherfile through :edit
myOtherfile, causing Vim to hide the myfile buffer and display myOtherfile in its place.
You can verify this with :ls and see both buffers listed with myfile flagged as hidden.

Buffer Commands
There are almost 50 commands that specifically target buffers. Many are useful but are
for the most part outside the scope of this discussion. Vim manages buffers automati-
cally as you open and close multiple files and windows. The suite of buffer commands
allows you to do almost anything with buffers. Often they are used within scripts to
handle such tasks as unloading, deleting, and modifying buffers.

Two buffer commands are worth knowing for general use because of their power to do
lots of work across many files:

windo cmd
Short for “window do” (at least we think it’s a decent mnemonic), this pseudo-
buffer command (actually it’s a window command) executes the command cmd in
each window. It acts as if you go to the top of the screen (^Wt), and cycles through
each window to execute the specified command as :cmd in that window. It acts
only within the current tab and stops at any window where :cmd generates an error.
The window in which the error occurs becomes the new current window.

cmd is not permitted to change the state of the windows; that is, it cannot delete,
add, or change the order of the windows.

188 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


cmd can concatenate multiple commands with the pipe (|) symbol.
Do not confuse this notation with the Unix shell convention of piping
commands! The commands are executed in sequence, with the first
command executed sequentially through all windows, then the
second command in all windows, etc.

As an example of :windo in action, suppose you are editing a suite of Java files and
for some reason you have a class name that is improperly capitalized. You need to
repair this by changing every occurrence of myPoorlyCapitalizedClass to MyPoorly
CapitalizedClass. With :windo you can do that with:

:windo %s/myPoorlyCapitalizedClass/MyPoorlyCapitalizedClass/g

Pretty cool!

bufdo[!] cmd
This is analogous to windo but operates on all of the buffers in your editing session,
not just visible buffers in the current tab. bufdo stops at the first error encountered,
just like windo, and leaves the cursor in the buffer where the command fails.

The following example changes all buffers to Unix file format:

:bufdo set fileformat=unix

Buffer Command Synopsis
Table 11-8 makes no attempt to describe all the commands related to buffers; instead
it summarizes the ones described in this section and some other popular commands.

Table 11-8. Summary of buffer commands

Command Description
:ls[!]
:files[!]
:buffers[!]

List buffers and file names. Include unlisted buffers if ! modifier is included.

:ball
:sball

Edit all args or buffers. (sball opens them in new windows.)

:unhide
:sunhide

Edit all loaded buffers. (sunhide opens them in new windows.)

:badd file Add file to list.

:bunload[!] Unload buffer from memory. The ! modifier forces a modified buffer to be unloaded
without being saved.

:bdelete[!] Unload buffer and delete it from the buffer list. The ! modifier forces a modified buffer
to be unloaded without being saved.

:buffer [n]
:sbuffer [n]

Move to buffer n. (sbuffer opens a new window.)

:bnext [n]
:sbnext [n]

Move to next nth buffer. (sbnext opens a new window.)

:bNext [n]
:sbNext [n]
:bprevious [n]

Move to nth next or previous buffer. (sbNext and sbprevious open a new window.)

Buffers and Their Interaction with Windows | 189

www.it-ebooks.info

http://www.it-ebooks.info/


Command Description
:sbprevious [n]

:bfirst
:sbfirst

Move to first buffer (sbfirst opens a new window).

:bfirst
:sbfirst

Move to last buffer (sblast opens a new window).

:bmod [n]
:sbmod [n]

Move to nth modified buffer (sbmod opens a new window).

Playing Tag with Windows
Vim extends the vi tag functionality into windows by offering the same tag traversal
mechanisms through multiple windows. Following a tag can also open a file in the
associated place in a new window.

The tag windowing commands split the current window and follow a tag either to a
file matching the tag or to the file matching the filename under the cursor.

:stag[!] tag splits the window to display the location for the tag found. The new file
containing the matched tag becomes the current window, and the cursor is placed over
the matched tag. If no tag is found, the command fails and no new window is created.

As you become more familiar with Vim’s help system, you can use
this :stag command to split your way through the help system rather
than jumping from file to file in the same window.

^WJ or ̂ W^J splits the window and opens a window above the current window. The new
window becomes the current window, and the cursor is placed on the matching tag. If
there is no match on the tag, the command fails.

^Wg] splits the window and creates a new window above the current window. In the
new window, Vim performs the command :tselect tag, where tag was the tag identifier
under the cursor. If no matching tag exists, the command fails. The cursor is placed in
the new window, and that new window becomes the current window.

^Wg^J works exactly like ^Wg], except that instead of performing :tselect, it per-
forms :tjump.

^Wf (or ^W^F) splits the window and edits the filename underneath the cursor. Vim will
look sequentially through the files set in the option variable path to find the file. If the
file doesn’t exist in any of the path directories, the command fails and does not create
a new window.

^WF splits the window and edits the filename under the cursor. The cursor is placed in
the new window editing that file and positioned at the line number matching the num-
ber following the filename in the first window.

190 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


^Wgf opens the file under the cursor in a new tab. If the file doesn’t exist, the new tab
is not created.

^Wgf opens the file under the cursor in a new tab and positions the cursor on the line
specified by the number following the filename in the first window. If the file doesn’t
exist, the new tab is not created.

Tabbed Editing
Did you know that in addition to editing in multiple windows, you can create multiple
tabs? Vim lets you create new tabs, each of which behaves independently. In each tab
you can split the screen, edit multiple files—virtually anything you would normally do
in a single window, but now all of your work is easily managed in one window with tabs.

Many Firefox users are very familiar with and dependent on tabbed browsing and will
recognize what this feature brings to power editing. For the uninitiated, it’s worth
trying.

You can use tabs in both regular Vim and gvim, but gvim is much nicer and easier. Some
of the more important ways to create and manage tabs include:

:tabnew filename
Open a new tab and edit a file (optional). If no file is specified Vim opens a new
tab with an empty buffer.

:tabclose
Close the current tab.

:tabonly
Close all other tabs. If other tabs have modified files, they are not removed unless
the autowrite option is set, in which case all modified files are written before the
other tabs are closed.

In gvim you can activate any tab simply by clicking the tab at the top of the screen. You
can also activate tabs in character-based terminals with the mouse if the mouse is con-
figured (see the mouse option). Also, it’s easy to move right and left from tab to tab with
CTRL  PAGE DOWN  (move one tab to the right) and CTRL  PAGE UP  (move one
tab to the left). If you are in the leftmost or rightmost tabs and you try to move left or
right respectively, Vim moves to the far right or far left tab.

gvim offers right-click pop-up menus for the tab, from which you can open a new tab
(with or without a new file to edit) and close a tab.

Figure 11-4 is an example of a set of tabs (notice the tab pop-up menu). 

Tabbed Editing | 191

www.it-ebooks.info

http://www.it-ebooks.info/


Closing and Quitting Windows
There are four different ways to close a window that are specific to window editing:
quit, close, hide, and close all others.

^Wq (or ^W^Q, or :quit) is really just a window version of the :quit command. In its
simplest form (i.e., a single session edit with only one window), it behaves exactly like
vi’s :quit command. If the hidden option is set and the current window is the last
window on the screen referencing that file, the window is closed but the file buffer is
retained (it can be retrieved) and hidden. In other words, Vim is still storing the file and
you can return to editing it later. If hidden is not set, the window is the last one refer-
encing that file, and there are unsaved changes in the current window buffer, the com-
mand fails in order to avoid losing your changes. But if some other window displays
the file, the current window closes.

^Wc (or :close[!]) closes the current window. If the hidden option is set and this is the
last window referencing this file, Vim closes the window and the buffer is hidden. If
this window is on a tab page and is the last window for that tab page, the window
and the tab page are closed. As long as you don’t use the ! modifier, this command will
not abandon any file with unsaved changes. The ! modifier tells Vim to close the current
window unconditionally.

Note that this command does not use ^W^C, because Vim uses ^C to
cancel commands. Therefore, if you try to use ̂ W^C, the ̂ C simply cancels
the command.

Similarly, while the ^W commands are used in combination with ^S and
^Q, some users may find their terminals frozen because some interpret
^S and ^Q as control characters to stop and start displaying information
to the screen. If you find your screen freezing mysteriously when using
these combinations, try the other listed combinations instead.

^Wo, ^W^O, and :only[!] close all windows except the current window. If the hidden
option is set, all closed windows hide their buffers. If it’s not set, any window refer-
encing a file with unsaved changes remains on the screen, unless you included the !
modifier, in which case all windows are closed and the files are abandoned. The

Figure 11-4. Example of gvim tabs and tabbed editing

192 | Chapter 11: Multiple Windows in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


behavior of this command can be affected by the autowrite option: if it’s set, all win-
dows are closed, but windows containing unsaved changes are written to the files on
disk before being exited.

:hide [cmd] quits the current window and hides the buffer if no other window refer-
ences it. If the optional cmd is supplied, the buffer is hidden and the command is exe-
cuted.

Table 11-9 provides a summary of these commands.

Table 11-9. Commands for closing and quitting windows

Command Description
:quit[!]
^Wq

^W^Q

Quit the current window.

:close[!]
^Wc

Close the current window.

:only[!]
^Wo

^W^O

Make the current window the only window.

Summary
As you now appreciate, Vim ramps up the editing horsepower with its many windowing
features. Vim lets you create and delete windows easily and on the fly. Additionally,
Vim provides the under-the-hood power of the raw buffer commands, buffers being
the underlying file management infrastructure with which Vim manages window ed-
iting. This is once again a perfect example of how Vim brings multiwindow editing to
beginners while simultaneously giving power users the tools they need to tune their
windowing experience.

Summary | 193

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 12

Vim Scripts

Sometimes customization alone isn’t enough for your editing environment. Vim lets
you define all of your favorite settings in your .vimrc file, but maybe you want more
dynamic or “just in time” configuration. Vim scripts let you do that.

From inspecting buffer contents to handling unanticipated external factors, Vim’s
scripting language lets you complete complex tasks and make decisions based on
your needs.

If you have a Vim configuration file (.vimrc, .gvimrc, or both), you are already scripting
in Vim; you just don’t know it. All of the Vim commands and options are valid inputs
to scripts. And, as you’d expect, Vim provides all of the standard flow control
(if...then...else, while, etc.), variables, and functions typical in any language.

In this chapter, we’ll walk through an example and incrementally build up a script.
We’ll look at simple constructs, use some of Vim’s built-in functions, and examine
rules you must consider in order to write well-behaved and predictable Vim scripts.

What’s Your Favorite Color (Scheme)?
Let’s begin with the simplest of configurations. We’ll customize our environment to a
color scheme we prefer. This is simple, and uses one of the basics of Vim scripts, the
simple Vim command.

Vim ships with 17 customized color schemes. You can choose and activate a color
scheme by putting the colorscheme command in your .vimrc or .gvimrc file. A favorite
“understated” color scheme of one author is the desert scheme:

colorscheme desert

Put a colorscheme like that in your configuration file, and now every time you edit with
Vim you will see your favorite colors.

So our first script is trivial. What if your tastes for your color scheme are more complex?
What if you like more than one color scheme? What if the time of day correlates to
your preferences? Vim scripts easily let you do this.

195

www.it-ebooks.info

http://www.it-ebooks.info/


Choosing an alternate color scheme depending on the time of day may
seem trite, but maybe not as much as you may think. Even Google
changes the colors and tone of your iGoogle home page throughout the
day.

Conditional Execution
One of the authors likes to divide the day into four partitions, each with its own dedi-
cated color scheme:

darkblue
Midnight to 6 a.m.

morning
6 a.m. to noon

shine
Noon to 6 p.m.

evening
6 p.m. to midnight

We’ll build a nested if...then...else... block of code for this purpose. There are a
couple of different syntaxes you can use for this block. One is more traditional, with
an explicitly laid out syntax:

if cond expr
  line of vim code
  another line of vim code
  ...
elseif some secondary cond expr
  code for this case
else
  code that runs if none of the cases apply
endif

The elseif and else blocks are optional, and you can include multiple elseif blocks.
Vim also allows the more terse and C-like construct:

cond ? expr 1 : expr 2

Vim checks the condition cond. If it’s true, expr 1 executes; otherwise, expr 2 executes.

Using the strftime( ) function

Now that we can conditionally execute code, we need to figure out what part of the
day it is. Vim has built-in functions that return this kind of information. In our case, we
use the strftime( ) function. strftime accepts two parameters, the first of which defines
the output format of a time string. (This format is system dependent, and not portable,
so you must pay due care when choosing a format. Fortunately, most mainstream for-
mats are common across systems.) The second optional parameter is a time measured

196 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


in seconds since Jan 1, 1970 (standard C time representation). This optional parameter
defaults to the current time. For our example, we can use the time format %H, producing
strftime("%H"), because the hour of the day is all we need to decide on our color
scheme.

Now that we know how to use conditional code, we have the Vim built-in function to
give us the information about the time of day with which we choose our matching color
scheme. Put this code into your .vimrc file:

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
if strftime("%H") < 6 + 0
  colorscheme darkblue
  echo "setting colorscheme to darkblue"
elseif strftime("%H") < 12 + 0
  colorscheme morning
  echo "setting colorscheme to morning"
elseif strftime("%H") < 18 + 0
  colorscheme shine
  echo "setting colorscheme to shine"
else
  colorscheme evening
  echo "setting colorscheme to evening"
endif

Notice that we introduce another Vim script command, echo. As a convenience, we
add this to echo the current scheme to ourselves; it also lets us check that the code
actually ran and produced the desired result. The message should appear in Vim’s
command status window or as a pop up, depending on where in the startup sequence
the echo command is encountered.

When we issue the command colorscheme, we use the name of the
scheme (e.g., desert) without surrounding quotes, but when we use the
echo command, we do quote the name ("desert"). This is an important
distinction!

In the case of the colorscheme command in our script, we are issuing a
direct Vim command, and the parameter for this command is a literal.
If we include surrounding quotes, the quotes are interpreted as part of
the name of the color scheme by the colorscheme. This is an error be-
cause none of the schemes include quotes in their names.

On the other hand, the echo command interpolates words without
quotes as expressions (calculations that return values) or functions.
Therefore, we need to quote the name of the color scheme we choose.

Variables
If you are a programmer, you probably see a problem with the script we just presented.
While it’s unlikely to be a big concern in what we are trying to do, we are executing a

What’s Your Favorite Color (Scheme)? | 197

www.it-ebooks.info

http://www.it-ebooks.info/


conditional check of the hour of the day by invoking the strftime( ) function at each
conditional point. Technically, we are conditionally checking one thing, but we are
evaluating it as an expression multiple times, potentially making a conditional decision
on something that changes value mid-execution.

Instead of executing the function each time, let’s evaluate it once and store the results
in a Vim script variable. We can then use the variable as often as we want in our con-
ditional, without incurring the overhead of a function call.

Vim variables are fairly straightforward, but there are a few things to know and manage.
Specifically, we must manage our variable’s scope. Vim defines a variable’s scope
through a convention that depends on the name’s prefix. The prefixes include:

b:
A variable recognized in a single Vim buffer

w:
A variable recognized in a single Vim window

t:
A variable recognized in a single Vim tab

g:
A variable recognized globally—i.e., it can be referenced anywhere

l:
A variable recognized within the function (a local variable)

s:
A variable recognized within the sourced Vim script

a:
A function argument

v:
A Vim variable—one controlled by Vim (these are also global variables)

If you do not define a Vim variable’s scope with a prefix, it defaults to
a global (g:) variable when defined outside a function, and to a local
(l:) variable when defined within a function.

You assign a value to a variable with the let command:

:let var = "value"

For our purposes, we can define our variable any way we want (context allowing) be-
cause we use it only once (though this will change later). For now, we use no prefix
and let Vim treat it as global by default. Let’s call our variable currentHour. By assigning
the result from strftime( ) only once, we now have a more efficient script:

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric)

198 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


let currentHour = strftime ("%H")
echo "currentHour is " currentHour
if currentHour < 6 + 0
  colorscheme darkblue
  echo "setting colorscheme to darkblue"
elseif currentHour < 12 + 0
  colorscheme morning
  echo "setting colorscheme to morning"
elseif currentHour < 18 + 0
  colorscheme shine
  echo "setting colorscheme to shine"
else
  colorscheme evening
  echo "setting colorscheme to evening"
endif

We can clean up the code a little more and get rid of a few lines by introducing a variable
named colorScheme. This variable holds the value of the color scheme that we determine
by time of day. We’ve added a capital “S” to distinguish the variable from the name of
the colorscheme command, but we could use the exact same letters and it wouldn’t
matter: Vim can determine from the context what is a command and what is a variable.

Notice the use of the dot (.) notation with the echo command. This
operator concatenates expressions into one string, which echo ultimate-
ly displays. In this case we concatenate a literal string, "setting color
scheme to ", and the value assigned to the variable colorScheme.

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
let currentHour = strftime("%H")
echo "currentHour is " . currentHour
if currentHour < 6 + 0
  let colorScheme ="darkblue" 
elseif currentHour < 12 + 0
  let colorScheme = "morning" 
elseif currentHour < 18 + 0
  let colorScheme = "shine"
else
  let colorScheme = "evening" 
endif
echo "setting color scheme to" . colorScheme
colorscheme colorScheme

We made an incorrect assumption about executing commands within
this script. If you coded along with the example, you already know this.
We correct the error in the next section.

What’s Your Favorite Color (Scheme)? | 199

www.it-ebooks.info

http://www.it-ebooks.info/


The execute Command
So far we have improved how we pick our color scheme, but our last change introduced
a slight twist. Initially, we decided to execute a color scheme discretely based on time
of day. Our last improvement looks correct, but after defining a variable (color
Scheme) to hold the value of our color scheme, we find that the command:

colorscheme colorScheme

results in the error shown in Figure 12-1.

We need a way to execute a Vim command that refers to a variable instead of a literal
string such as darkblue. Vim gives us the execute command for this purpose. When
passed a command, it evaluates variables and expressions and substitutes their values
into the command. We can exploit this feature along with the concatenation shown in
the previous section to pass the value of our variable to the colorscheme command:

execute "colorscheme " . colorScheme

The exact syntax used here (particularly the quotation marks) may be confusing. The
execute command expects variables or expressions, but colorscheme is just a plain
string, not a variable or expression. We don’t want execute to evaluate colorscheme;
we just want it to accept the name as is. So we turn the name of the command into a
literal string by enclosing it in quotation marks. While we’re at it, we add a blank space
to the end, before the final quotation mark. This is important because we need a space
between the command and the value.

Our variable colorScheme must be outside the quotation marks so that it’s evaluated by
execute. Think of execute’s behavior this way:

• Plain words are evaluated as variables or expressions, and execute substitutes their
values.

• Quotation marks enclosing strings are taken literally; execute does not try to eval-
uate them to return a value.

Using execute fixes our error, and Vim now loads the color scheme as expected.

After loading Vim, you can verify that you loaded the proper color scheme. The
colorscheme command sets its own variable, colors_name. In addition to echoing values
of the variables you set in your script, you can manually execute the echo command

Figure 12-1. colorscheme colorScheme error

200 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


and examine the colors_name variable to see whether our script has in fact executed the
correct colorscheme command based on the time of day:

echo colors_name

Defining Functions
So far we’ve created a script that works nicely for us. Now let’s create code we can
execute at any time during a session, not just when Vim starts. We will give an example
of this soon, but first we need to create a function containing the code of our script.

Vim lets you define your own functions with function...endfunction statements. Here
is a sample skeleton of a user-defined function:

function myFunction (arg1, arg2...)
  line of code
  another line of code
endfunction

We can easily turn our script into a function. Notice that we don’t need to pass in any
arguments, so the parentheses in the function definition are empty:

function SetTimeOfDayColors()
  " progressively check higher values... falls out on first "true"
  " (note addition of zero ... this guarantees return from function is numeric)
  let currentHour = strftime("%H")
  echo "currentHour is " . currentHour
  if currentHour < 6 + 0
    let colorScheme = "darkblue" 
  elseif currentHour < 12 + 0
    let colorScheme = "morning" 
  elseif currentHour < 18 + 0
    let colorScheme = "shine"
  else
    let colorScheme = "evening" 
  endif
  echo "setting color scheme to" . colorScheme
  execute "colorscheme " . colorScheme
endfunction

Vim user-defined function names must begin with a capital letter.

Now we have a function defined in our .gvimrc file. But if we don’t call it, the code will
never execute. You call a function with Vim’s call statement. In our example it would
look like:

call SetTimeOfDayColors()

What’s Your Favorite Color (Scheme)? | 201

www.it-ebooks.info

http://www.it-ebooks.info/


Now we can set our color scheme at any time, anywhere within a Vim session. One
option is just to put the previous call line in our .gvimrc. The results are the same as
our earlier example, where we ran the code without using a function. But in the next
section, we’ll see a neat Vim trick that calls our function repeatedly so that our color
scheme gets set regularly throughout our session, thus changing dynamically through-
out the day! Of course, this introduces other problems that we must address.

A Nice Vim Piggybacking Trick
In the previous section we defined a Vim function, SetTimeOfDayColors( ), which we
call once to define our color scheme. What if we want to repeatedly check the time of
day and change the color scheme accordingly? Obviously the one-time call in .gvimrc
doesn’t accomplish this. To fix this, we introduce a neat Vim trick using the status
line option.

Most Vim users take the Vim status line for granted. By default, statusline has no
value, but you can define it to display virtually any information available to Vim in the
status line. And because the status line can display dynamic information, such as the
current line and column, Vim recalculates and redisplays statusline any time the edit
status changes. Almost any action in Vim triggers a statusline redraw. So we’ll use this
as a trick to call our color scheme function and change the color scheme dynamically.
As we will soon see, this is an imperfect approach.

The statusline accepts an expression, evaluates it, and displays it in the status line.
This includes functions. We use this feature to call our SetTimeOfDayColors( ) every
time the status line is updated, which is often. Because this feature overrides the default
status line and we don’t want to lose the valuable information we get by default, let’s
incorporate a wealth of information in the following initial definition of our status line:

set statusline=%<%t%h%m%r\ \ %a\ %{strftime(\"%c\")}%=0x%B\
    \\ line:%l,\ \ col:%c%V\ %P

The definition for statusline is split across two lines. Vim considers any
line with an initial nonblank character of backslash (\) to be a contin-
uation of the previous line, and it ignores all whitespace up to the back-
slash. So if you use our definition, make sure it is copied and entered
exactly. If you can’t get it to work, you can revert to starting with an
undefined statusline.

You can look up the meaning of the various characters preceded by percent signs in
the Vim documentation. The definition produces a status line like the following:

ch12.xml   Wed 13 Feb 2008 06:24:25 PM EST          0x3C line:1,  col:1 Top

Our focus in this chapter is not on what the status line can display, but on exploiting
the statusline option to evaluate a function.

202 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


Now we add our SetTimeOfDayColors( ) function to the statusline. By using += instead
of a plain equals sign, we add something to the end instead of replacing what we defined
earlier:

set statusline += \ %{SetTimeOfDayColors()}

Now our function is part of the status line. Even though it doesn’t contribute interesting
information to the status line, it now checks the time of day and potentially updates
our color scheme as the hour of the day progresses. Can you see a problem with this?

We now have a Vim script function that inspects the hour of the day each time the Vim
status line gets updated. In an earlier section we put some effort into eliminating a few
calls to strftime( ) for the sake of efficiency, but now we’ve added so many calls to our
session that the number is dizzying.

When our session happens to evaluate the statusline at the proper hour of the day, it
does what we want and changes the color scheme. But as we’ve defined it, it checks the
time and resets the color scheme regardless of whether there’s a change. In the next
section, we examine more efficient means to this end by using global variables outside
of our function.

Tuning a Vim Script with Global Variables
As we discovered with our last modification to our Vim script, we almost have the
desired behavior. Our function is called every time the Vim status line is updated, but
because that happens quite often, it’s problematic on several levels.

First, because it’s called so often, we might be concerned about the load it creates on
the computer’s processor. Fortunately, with today’s computers this is unlikely to be of
much concern, but it’s still probably bad form to redefine the color scheme over and
over so often. If this were the only issue, we might consider our script complete and
not bother tuning it further. However, it is not.

If you’ve coded along with the examples, you already know the problem. The constant
reestablishment of the color scheme while you move around in the edit session creates
a noticeable and annoying flicker, because each definition of the color scheme, even if
it’s the same as the current color scheme, requires Vim to reread the color scheme
definition script, reinterpret the text, and reapply all of the color syntax highlight rules.
Even computers with extremely high computing power are unlikely to provide enough
graphics processing power to render the constant updating flicker-free. We need to fix
this.

We can define our color scheme once, and then, within a conditional block, determine
each time whether the color scheme changes and consequently needs to be defined and
drawn. We do this by taking advantage of the global variable set by the colorscheme
command: colors_name. Let’s recast our function to take this into consideration:

function SetTimeOfDayColors()
  " progressively check higher values... falls out on first "true"

What’s Your Favorite Color (Scheme)? | 203

www.it-ebooks.info

http://www.it-ebooks.info/


  " (note addition of zero ... this guarantees return from function is numeric)
  let currentHour = strftime("%H")
    if currentHour < 6 + 0
    let colorScheme = "darkblue"
  elseif currentHour < 12 + 0
    let colorScheme = "morning"
  elseif currentHour < 18 + 0
    let colorScheme = "shine"
  else
    let colorScheme = "evening"
  endif

  " if our calculated value is different, call the colorscheme command.
  if g:colors_name !~ colorScheme
    echo "setting color scheme to " . colorScheme
    execute "colorscheme " . colorScheme
  endif
endfunction

This would seem to solve our problem, but now we have a different one. We now get
the error shown in Figure 12-2.

It turns out that Vim takes a very stern attitude when we try to refer to a variable that
hasn’t yet been defined. But what’s wrong with the colors_name variable? We know
that colorscheme sets it. We’ve even taken the precaution of using the g: prefix to
indicate that it’s a global variable. But the first time this function executes,
g:colors_name has no value and hasn’t even been defined, because the colorscheme
command hasn’t executed. Only after the command runs can we safely check
g:colors_name.

This is simple to fix, and we can do it one of two ways. Insert either:

let g:colors_name = "xyzzy"

or:

colorscheme default

in your .gvimrc file. Either statement defines the global variable as soon as your session
starts, so the comparison in our function will always be valid. Now we have a dynamic
and efficient function. We will make one last improvement in the following section.

Figure 12-2. Undefined variable

204 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


Arrays
It would be nice if somehow we could just extract our color scheme value without the 
extended if...then...else block. With Vim arrays, we can improve the script and
make it eminently more readable.

Vim arrays are created by defining a variable’s value as a comma-separated list of values
within square brackets. We introduce an array named Favcolorschemes for our func-
tion. We could define it within the scope of the function, but to leave open the possi-
bility of accessing the array elsewhere in our session, we’ll define the array outside of
the function as a global array:

let g:Favcolorschemes = ["darkblue", "morning", "shine", "evening"]

This line should go in your .gvimrc file. Now we can reference any value within the
array variable g:Favcolorschemes by its subscript, starting with element zero. For ex-
ample, g:Favcolorschemes[2] is equal to the string "shine".

Taking advantage of Vim’s treatment of math functions, where results of integer divi-
sion are integers (the remainder gets truncated), we can now quickly and easily get our
preferred color scheme based on the hour of the day. Let’s look at a final version of our
function:

function SetTimeOfDayColors()
  " currentHour will be 0, 1, 2, or 3
  let g:CurrentHour =  (strftime("%H") + 0) / 6
  if  g:colors_name !~ g:Favcolorschemes[g:CurrentHour]
    execute "colorscheme " . g:Favcolorschemes[g:CurrentHour]
    echo "execute " "colorscheme " . g:Favcolorschemes[g:CurrentHour]
    redraw
  endif
endfunction

Congratulations! You have built a complete Vim script that takes into consideration
many of the factors needed to build any useful script you may want.

Dynamic File Type Configuration Through Scripting
Let’s look at another nifty script example. Normally, when editing a new file, the only
clue Vim gets in order to determine and set filetype is the file’s extension. For exam-
ple, .c means the file is C code. Vim easily determines this and loads the correct behavior
to make it easy to edit a C program.

But not all files require an extension. For example, while it’s become common con-
vention to create shell scripts with a .sh extension, this author doesn’t like or abide by
this convention, especially having created thousands of scripts before a notion of this
convention arose. Vim is actually sufficiently well-trained to recognize a shell script
without the crutch of a file extension, by looking at the text inside the file. However,

Dynamic File Type Configuration Through Scripting | 205

www.it-ebooks.info

http://www.it-ebooks.info/


it can do so only on the second edit, when the file provides some context for determining
the type. Vim scripts can fix that!

Autocommands
In our first script example, we relied on Vim’s habit of updating the status line con-
stantly and “hid” our function in the status line to set the color scheme by time of day.
Our script to determine the file type dynamically relies on a bit more formal Vim con-
vention, autocommands.

Autocommands include any valid Vim commands. Vim uses events to execute com-
mands. Some examples of Vim events include:

BufNewFile
Triggers an associated command when Vim begins editing a new file

BufReadPre
Triggers an associated command before Vim moves to a new buffer

BufRead, BufReadPost
Trigger an associated command when editing a new buffer, but after reading the file

BufWrite, BufWritePre
Trigger an associated command before writing a buffer to a file

FileType
Triggers an associated command after setting the filetype

VimResized
Triggers an associated command after a Vim window size has changed

WinEnter, WinLeave
Trigger an associated command upon entering or leaving a Vim window,
respectively

CursorMoved, CursorMovedI
Trigger an associated command every time the cursor moves in normal mode or in
insert mode, respectively

Altogether there are almost 80 Vim events. For any of these events, you can define an
automatic autocmd that executes when that event occurs. The autocmd format is:

autocmd [group] event pattern [nested] command

The elements of this format are:

group
An optional command group (described later)

event
The event that will trigger command

pattern
The pattern matching the filename for which command should execute

206 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


nested
If present, allows this autocommand to be nested within others

command
The Vim command, function, or user-defined script to execute when the event
occurs

For our example, our goal is to identify the file type for any new file we open, so we
use * for pattern.

The next decision is which event to use to trigger our script. Because we want to try to
identify our file type as early as possible, two good candidates suggest themselves:
CursorMovedI and CursorMoved.

CursorMoved triggers an event when the cursor moves, which seems wasteful because
merely moving the cursor is not likely to provide more information about a file’s type.
CursorMovedI, in contrast, fires when text is input, and therefore seems like the best
candidate.

We must write a function to do the work each time. Let’s call it CheckFileType. We
now have enough information to define our autocmd command. It looks like this:

autocmd CursorMovedI * call CheckFileType()

Checking Options
In our CheckFileType function, we need to inspect the value of the filetype option.
Vim scripts use special variables to extract values from options, by prefixing the option
name (filetype in our case) with an ampersand (&) character. Hence we will use the
variable &filetype in our function.

We start with a simple version of our CheckFileType function:

function CheckFileType()
 if &filetype == ""
   filetype detect
 endif
 endfunction

The Vim command filetype detect is a Vim script installed in the $VIMRUNTIME direc-
tory. It runs through many criteria and tries to assign a file type to your file. Normally
this occurs once, so if the file is new and filetype cannot determine a file type, the edit
session cannot assign syntax formatting.

There is a problem: we call our function each time the cursor moves during input mode,
continually trying to detect the file type. We first check to see whether the file already
has a file type, which would mean that our function succeeded in its previous execution
and therefore does not need to do it anymore. We won’t worry about anomalies, such
as a mistaken identification or a file that we start in one programming language and
then decide to change to another.

Dynamic File Type Configuration Through Scripting | 207

www.it-ebooks.info

http://www.it-ebooks.info/


Let’s edit a new shell script file and see the results:

$ vim ScriptWithoutSuffix 

Input the following:

#! /bin/sh

inputFile="DailyReceipts"

By now, Vim turns on color syntax, as shown in Figure 12-3.

You can tell from the picture that Vim is using gray for the string, but the black-and-
white image does not show that # /bin/sh is blue, inputFile= is black, and
"DailyReceipts" is purple. Unfortunately, these aren’t the colors for shell syntax
highlighting. A quick check of the filetype option through the command set file
type displays the message shown in Figure 12-4.

Vim assigned file type conf to our file, which is not what we want. What went wrong?

If you try this example, you will see that Vim assigned the file type immediately when
you entered the first character, #, at the first CursorMovedI event. Configuration files for
Unix utilities and daemons typically use the # character to start a comment, so Vim’s
heuristics assume that a # at the beginning of the line is the beginning of a comment in
a configuration file. We have to teach Vim to be more patient.

Let’s change our function to allow for more context. Instead of trying to detect the file
type at the first available opportunity, let’s allow the user to enter about 20 characters
first.

Buffer Variables
We need to introduce a variable into our function to tell Vim to hold off and not try to
detect the file type until the CursorMovedI autocommand calls the function more than
20 times. Our notion of what is a new file, as well as the number of characters we want
to enter into that file, are specific to a buffer. In other words, cursor movement in other

Figure 12-3. File type of new file detected

Figure 12-4. conf file type detected

208 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


buffers of the edit session should not count against the check. Therefore, we use a buffer
variable and call it b:countCheck.

Next, we revise the function to check for at least 20 moves of the cursor in input mode
(implying approximately 20 characters entered), along with checking whether a file
type has already been assigned:

function CheckFileType()

let b:countCheck += 1

" Don’t start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
   filetype detect
 endif
 endfunction

But now we get the error shown in Figure 12-5.

That’s a familiar error. As before, we had the gall to check a variable before it was
defined. And this time, it’s all our fault because our script is responsible for defining
b:countCheck. We’ll handle this subtlety in the next section.

The exists( ) Function
It’s important to know how to manage all of your variables and functions: Vim requires
you to define each one so it already exists before any type of evaluation references it.

We can easily resolve our script error by checking for b:countCheck’s existence and
assigning it a value with the :let command shown earlier:

function CheckFileType()

 if exists(“b:countCheck”) == 0
  let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
   filetype detect
 endif
 endfunction

Figure 12-5. b:countCheck generates an “undefined” error

Dynamic File Type Configuration Through Scripting | 209

www.it-ebooks.info

http://www.it-ebooks.info/


Now test the code. Figure 12-6 shows the moment before the 20-character limit is
reached, and Figure 12-7 shows the effect of entering the 21st character.

The /bin/sh text suddenly has syntax color highlighting. A quick check with set
filetype verifies that Vim has made the correct assignment, as shown in Figure 12-8.

For all practical purposes, we have a complete and satisfactory solution, but for good
form we add another check to stop Vim from trying to detect a file type after approx-
imately 200 characters have been entered:

function CheckFileType()

if exists("b:countCheck") == 0
  let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
   filetype detect
 endif
 endfunction

Now, even though our function CheckFileType is called each time Vim’s cursor moves,
we incur little overhead because the initial checks exit the function once a file type is
detected or the threshold of 200 characters is exceeded. Although this is probably all
we need for reasonable functionality and minimal processing overhead, we’ll continue
to look at more mechanisms to give us a more complete and satisfactory solution that

Figure 12-6. No file type detected yet

Figure 12-7. File type detected

Figure 12-8. Correct detection

210 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


not only incurs minimal overhead, but actually “goes away” when we don’t need it any
more.

You may have noticed we have been slightly vague about the exact
meaning of our threshold count of 20 characters. This ambiguity is in-
tentional. Because we are counting cursor movements, in input mode
it’s reasonable to assume each movement of the cursor corresponds to
a new character, adding to the “sufficient” context text from which
CheckFileType( ) will determine the file type. However, all cursor move-
ment in input mode counts, so any backspacing to correct typing errors
also counts against the threshold counter. To confirm this, try our ex-
ample, type #, and backspace over it and retype it 10 times. The 11th
time should reveal a color-coded #, and the file type should now be
(incorrectly) set to conf.

Autocommands and Groups
Our script so far ignores any side effects introduced by calling our function for every
movement of the cursor. We minimized overhead through reasonableness checks that
avoid calling the heavy filetype detect command unnecessarily. But what if even
minimal code for our function is expensive? We need a way to stop calling code when
we don’t need it. For this we leverage Vim’s notion of autocommand groups and their
ability to remove commands based on their group association.

We modify our example by first associating our function called by the CursorMovedI
event with a group. Vim provides an augroup command to do this. Its syntax is:

augroup groupname

All subsequent autocmd definitions become associated with group groupname until the
statement:

augroup END

(There’s also a default group for commands not entered within an augroup block.)

Now we associate our previous autocmd command with our own group.

augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END

Our CursorMovedI-triggered function is part of the autocommand group new
FileDetection. We will explore the usefulness of this in the next section.

Deleting Autocommands
To implement our function as cleanly as possible, we strive to have it remain effective
only as long as necessary. We want to undefine its reference once it has exceeded its
useful life (that is, as soon as we’ve either detected a file type or decided we can’t). Vim

Dynamic File Type Configuration Through Scripting | 211

www.it-ebooks.info

http://www.it-ebooks.info/


lets you delete an autocommand simply by referencing the event, the pattern that file-
names must match, or its group.

autocmd! [group] [event] [pattern]

The usual Vim “force” character—an exclamation point (!)—follows the autocmd key-
word to indicate that commands associated with the group, event, or pattern are to be
removed.

Because we previously associated our function with our user-defined group new
FileDetection, we now have control over it and can remove it by referencing the group
in the autocommand remove syntax. We do so with:

autocmd! newFileDetection 

This deletes all autocommands associated with the group newFileDetection, which in
our case is only our function.

We verify both the definition and removal of our autocommand by querying Vim at
startup (when creating the new file) with the command:

autocmd newFileDetection

Vim responds as shown in Figure 12-9.

After a file type has been detected and assigned or the threshold of 200 characters has
been exceeded, we no longer want the autocommand definition. So, we add the final
touch to our code. Combining the definition of our augroup, our autocmd command,
and our function, the lines in our .vimrc look like:

augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END

function CheckFileType()

  if exists("b:countCheck") == 0
    let b:countCheck = 0
  endif

  let b:countCheck += 1

  " Don't start detecting until approx. 20 chars.
  if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
    filetype detect

Figure 12-9. Response to autocmd newFileDetection command

212 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


  " If we’ve exceeded the count threshold (200), OR a filetype has been detected
  " delete the autocmd!
  elseif b:countCheck >= 200 || &filetype != ""
    autocmd! newFileDetection
  endif
endfunction

After the syntax color highlighting begins, we can verify that our function deletes itself
by entering the same command as when we entered the buffer:

autocmd newFileDetection

Vim’s response is shown in Figure 12-10.

Notice now that no autocommands are defined for the newFileDetection group. You
can delete the auto group as follows:

augroup! groupname

but doing so does not delete the associated autocommands, and Vim will create an error
condition each time those autocommands are referenced. Therefore, make sure to de-
lete the autocommands within a group before deleting the group.

Do not confuse deleting autocommands with deleting auto groups.

Congratulations! You have completed your second Vim script. This script extends your
Vim knowledge and gives you a peek at the different features accessible with scripting.

Some Additional Thoughts About Vim Scripting
We’ve covered only a small corner of the entire Vim scripting universe, but we hope
you get the sense of Vim’s power. Virtually everything you can do interactively using
Vim can be coded in a script.

In this section we look at a nice example included in the built-in Vim documentation,
discuss in more detail concepts we touched on earlier, and look at a few new features.

Figure 12-10. After the deletion criteria have been met for our autocommand group

Some Additional Thoughts About Vim Scripting | 213

www.it-ebooks.info

http://www.it-ebooks.info/


A Useful Vim Script Example
Vim’s built-in documentation includes a handy script we think you’ll want to use. It
specifically addresses keeping a current timestamp in the meta line of an HTML file,
but it could easily be used for many other types of files where it is useful to have the
most recent modification time of the file within the text of that file.

Here is the example essentially intact (we have modified it slightly):

autocmd BufWritePre,FileWritePre *.html   mark s|call LastMod()|'s
fun LastMod()
  " if there are more than 20 lines, set our max to 20, otherwise, scan
  " entire file.
  if line("$") > 20
    let lastModifiedline = 20
  else
    let lastModifiedline = line("$")
  endif
  exe "1," . lastModifiedline . "g/Last modified: /s/Last modified: 
      .*/Last modified: " .
  \ strftime("%Y %b %d")
endfun

Here’s a brief breakdown of the autocmd command:

BufWritePre, FileWritePre
These are the events for which the command is triggered. In this case, Vim executes
the autocommand before the file or buffer gets written to the storage device.

*.html
Execute this autocommand for any file whose name ends in .html.

mark s
We changed this for readability from the original. Instead of ks, we used the equiv-
alent but more obvious command mark s. This simply creates a marked position
named s in the file so we can return to this point later.

|
Pipe characters separate multiple Vim commands that are executed within an au-
tocommand definition. These are simple separators with no relationship to Unix
shell pipes.

call LastMod( )
This calls our user-defined LastMod function.

|
Same as previous.

's
Return to the line we marked with the name s.

It’s worth verifying this script by editing a .html file, adding the line “Last
modified: " ”, and issuing the w command.

214 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


This example is useful, but it’s not canonically correct in relation to its
stated goal of substituting the HTML meta statement. More appropri-
ately, if indeed it were meant to address a meta statement, the substitu-
tion should look for the content=... part of the meta statement. Still,
this example is a good start toward solving that problem and is a useful
example for other file types.

More About Variables
We now discuss in more detail what makes up Vim variables and how they’re used.
Vim has five variable types:

Number
A signed 32-bit number. This number can be represented in decimal, hexadecimal
(e.g., 0xffff), or octal (e.g., 0177).

String
A string of characters.

Funcref
A reference to a function.

List
This is Vim’s version of an array. It is an ordered “list” of values and can contain
any mix of Vim values as elements.

Dictionary
This is Vim’s version of a hash, often also referred to as an associative array. It is
an unordered collection of value-pairs, the first being a key that can be used to
retrieve an associated value.

Vim performs convenience conversions of variables where context allows, most notably
back and forth between strings and numbers. To be safe (as we were in our first script
example), when using a string as a number, ensure conversion by adding 0 to it:

if strftime("%H") < 6 + 0

Expressions
Vim evaluates expressions in a fairly straightforward way. An expression can be as
simple as a number or literal string, or it can be as complex as a compound statement,
itself composed of expressions.

It is important to note that Vim’s math functions work with integers only. If you want
floating-point and precision, you need to use extensions, such as system calls to external
math-capable routines.

Some Additional Thoughts About Vim Scripting | 215

www.it-ebooks.info

http://www.it-ebooks.info/


Extensions
Vim offers a number of extensions and interfaces to other scripting languages. Notably,
these include perl, Python, and Ruby, three of the most popular scripting languages.
See Vim’s built-in documentation for details on usage.

A Few More Comments About autocmd
In our earlier example in the section “Dynamic File Type Configuration Through
Scripting” on page 205, we used Vim’s autocmd command to key on events from which
our user-defined functions are called. This is very powerful, but do not discount simpler
uses of autocmd. For example, you can use autocmd to tune specific Vim options for
different file types.

A good example might be to change the shiftwidth option for different file types. File
types with copious indentation and nesting levels may benefit from more modest in-
dentation. You may want to define your shiftwidth as 2 for HTML in order to prevent
code from “walking” off the right side of the screen, but use a shiftwidth of 4 for C
programs. To accomplish this distinction, include these lines in your .vimrc
or .gvimrc file:

autocmd BufRead,BufNewFile *.html set shiftwidth=2
autocmd BufRead,BufNewFile *.c,*.h set shiftwidth=4

Internal Functions
In addition to all the Vim commands, you have access to about 200 built-in functions.
It is beyond the scope of this discussion to identify and document all of these functions,
but it is useful to know what categories or types of functions are available. The following
categories are taken from the Vim built-in help file, usr_41.txt:

String manipulation
All of the standard string functions that programmers expect are included in these
functions, from conversion routines to substring routines and more.

List functions
This is an entire array of array functions. They mirror closely the array functions
found in perl.

Dictionary (associative array) functions
These functions include extraction, manipulation, verification, and other types of
functions. Again, these closely resemble perl hash functions.

Variable functions
These functions are “getters” and “setters” to move variables around in Vim win-
dows and buffers. There is also a type to determine variable types.

216 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.it-ebooks.info/


Cursor and position functions
These functions allow moving around in files and buffers, and creating marks so
that positions can be remembered and returned to. There are also functions that
give positional information (e.g., cursor line and column).

Text in current buffer functions
These functions manipulate text within buffers, for example, changing a line,
retrieving a line, etc. There are also search functions.

System and file manipulation functions
These include functions to navigate the operating system on which Vim is running,
for example, finding files within paths, determining the current working directory,
creating and deleting files, etc. This group includes the system( ) function, which
passes commands to the operating system for external execution.

Date and time functions
These do a wide variety of manipulations of date and time formats.

Buffer, window, and argument list functions
These functions provide mechanisms to gather information about buffers, and the
arguments for each one.

Command-line functions
These functions get command-line position, the command line, and the command-
line type, and set the cursor position within the command line.

Quick fix and location lists functions
These functions retrieve and modify the quick fix lists.

Insert mode completion functions
These functions are used for command and insertion completion features.

Folding functions
These functions give information for folds, and expand text displayed for closed
folds.

Syntax and highlighting functions
These functions retrieve information about syntax highlighting groups and syntax
IDs.

Spelling functions
These functions find suspected misspelled words and offer suggested correct
spellings.

History functions
These functions get, add, and delete history items.

Interactive functions
These functions provide an interface to the user for activities such as file selection.

GUI functions
There are three simple functions here to get the name of the current font, get the
GUI window x coordinate, and get the GUI window y coordinate.

Some Additional Thoughts About Vim Scripting | 217

www.it-ebooks.info

http://www.it-ebooks.info/


Vim server functions
These functions communicate with a (possibly) remote Vim server.

Window size and position functions
These functions get window information and allow for saving and restoring win-
dow “views.”

Various functions
These are the miscellaneous “other” functions that don’t fit nicely in the previous
categories. They include functions such as exists, which checks for the existence
of a Vim item, and has, which checks to see whether Vim supports a certain feature.

Resources
We hope we’ve piqued enough interest and provided enough information to get you
started with Vim scripts. An entire book could be devoted to the subject of Vim script-
ing. Luckily, there are other resources to turn to for help.

A good starting point is to go to the source of Vim itself and visit the pages specifically
dedicated to scripting: http://www.vim.org/scripts/index.php. Here you will find over
2,000 scripts available for download. The entire body of work is searchable and you
are invited to participate by rating scripts and even contributing your own.

We also remind you that the built-in Vim help is invaluable. The most productive help
topics we recommend are:

help autocmd
help scripts
help variables
help functions
help usr_41.txt

And don’t forget the myriad Vim scripts in the Vim runtime directories. All of the files
with the suffix .vim are scripts, and these provide an excellent and fertile playground
for learning how to code by example.

Go play. It’s the best way to learn.

218 | Chapter 12: Vim Scripts

www.it-ebooks.info

http://www.vim.org/scripts/index.php
http://www.it-ebooks.info/


CHAPTER 13

Graphical Vim (gvim)

A longtime complaint about vi and its clones was the lack of a graphical user interface
(GUI). Especially for those caught up in the Emacs versus vi religious wars, vi’s lack
of a GUI was the ultimate trump card to argue that vi was a nonstarter when discussing
editors.

Eventually, the vi clones and “work-alikes” created their own GUI versions. Graphical
Vim is called gvim. Like the other vi clones, gvim offers robust and extensible GUI
functions and features. We’ll cover the most useful ones in this chapter.

Some of gvim’s graphical functionality wraps commonly used Vim features, whereas
others introduce the point-and-click convenience functionality most computer users
now expect. Although some veteran Vim users (this author included!) may cringe at
the thought of grafting a GUI onto their workhorse editor, gvim is thoughtfully con-
ceived and implemented. gvim offers functionality and features spanning the range of
its users’ abilities, softening Vim’s steep learning curve for beginners and transparently
bringing expert users extra editing power. This strikes a nice compromise.

gvim for MS Windows comes with a menu entry labeled “easy gvim.”
This is indeed valuable to people who have never used Vim, but, iron-
ically, it is anything but easy for expert users.

In this chapter we first discuss the general gvim GUI concepts and features, with a brief
introductory section about mouse interaction. Additionally, we refine the discussion
around differences and things you should know for different gvim environments. Spe-
cifically, we focus on MS Windows and the X Window System, the two main graphical
platforms. We touch briefly on other platforms and guide you to appropriate resources
for more complete information. We also provide a brief list of GUI options with
synopses.

219

www.it-ebooks.info

http://www.it-ebooks.info/


General Introduction to gvim
gvim brings all the functionality, power, and features of Vim while adding the conven-
ience and intuitive nature of a GUI environment. From traditional menus to visual
highlighting editing, gvim provides the GUI experience today’s users expect. For vet-
eran, console-based, text-environment vi users, gvim still gives the familiar core power
and doesn’t dumb down the paradigm that garnered vi its reputation as a power editor.

Starting gvim
When Vim is compiled with GUI support, you can invoke it by issuing a gvim command
or a Vim command with an added -g option. On Windows, the self-installing execut-
able adds one interesting feature that many discover only accidentally after installation:
a new Windows Explorer menu item labeled “Edit with Vim.” This provides quick and
easy access to gvim by integrating it into the Windows environment. It is worth trying
on files you maybe wouldn’t have considered before, especially unusual files such as
binaries. However, it is potentially dangerous to edit binary files, and we caution you
to use extreme care when editing these files.

The configuration files and options recognized by gvim are slightly different from those
used by Vim. gvim reads and executes two startup files: .vimrc, followed by .gvimrc.
Although you can put gvim-specific options and definitions in .vimrc, it’s better to
define them in .gvimrc. This provides a nice separation of regular Vim and gvim
customization. It also assures proper behavior on startup. For exam-
ple, :set columns=100 isn’t valid in Vim and will generate an error when Vim is started.

If a system gvimrc exists (usually in $VIM/gvimrc), it is executed. Administrators can use
this system-wide configuration file to set common options for their users. This provides
a baseline configuration so that users will share a common editing experience.

More experienced Vim users can add their own favorite custom settings and features.
After gvim reads the optional system configuration, it looks in four places for additional
configuration information, in the following order, and stops searching after finding any
one of these:

• An exrc command stored in the $GVIMINIT environment variable.

• A user’s gvimrc file, usually stored in $HOME/.gvimrc. If it is found, it is sourced.

• In a Windows environment, if $HOME is not set, gvim looks in $VIM/_gvimrc. (This
is the normal situation for Windows users, but it’s an important distinction for
users who have Unix work-alikes installed and are likely to have the $HOME variable
set. One example would be the popular Cygwin suite of Unix tools.)

• If a _gvimrc isn’t found, gvim finally looks again for .gvimrc.

If gvim finds a nonempty file to execute, that file’s name is stored in the $MYGVIMRC
variable and further initialization stops.

220 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


There is one more option for customization. If, in the cascading sequence of initializa-
tion just described, the option exrc is set:

set exrc

gvim will additionally look in the current directory for .gvimrc, .exrc, or .vimrc and
source that file if it isn’t one of the previously listed files (i.e., it hasn’t already been
discovered as an initialization file and already executed).

In a Unix environment, there are security issues around local directories
containing configuration files (both .gvimrc and .vimrc files), and
gvim defaults to enforcing some restrictions on what can be executed
from these files by setting the secure option if the file is not owned by
the user. This helps prevent malicious code from being malicious. If you
want to be sure, set the secure option explicitly in your .vimrc
or .gvimrc file.

Using the Mouse
The mouse in gvim does something useful in every editing mode. Let’s look at the
standard Vim editing modes and how gvim treats the mouse in each:

Command mode
You enter this mode when you open the command buffer at the bottom of the
window by typing a colon (:). If the window is in command mode, you can use
the mouse to reposition the cursor anywhere in the command line. This is enabled
by default or when you include the c flag in your mouse option.

Insert mode
This is the mode for entering text. If you click in a buffer that’s in insert mode, the
mouse repositions the cursor and lets you immediately start entering text at that
position. This mode is enabled by default or when you include the i flag in your
mouse option.

The mouse’s behavior in insert mode provides easy and intuitive point-and-click
positioning. In particular, it bypasses the need to exit insert mode, navigate with
the mouse, motion commands, or other methods, and then reenter insert mode.

Superficially, this seems like a great idea, but in practice it will appeal to only a
subset of users. It may be more annoying than helpful to experienced Vim users.

Consider what happens when you are in insert mode and leave gvim for some other
application. When you click back into the gvim window, the point you click is now
the insertion point for text, and probably not the one you want. In a single-window
gvim session, you could land in a different spot from where you were originally
working; in a multiple-window gvim screen, you could end up with the mouse in
a completely different window. You might end up entering text into the wrong file!

General Introduction to gvim | 221

www.it-ebooks.info

http://www.it-ebooks.info/


Normal mode
This includes any time you’re not in insert mode or on the command line. Clicking
the mouse in the screen simply leaves the cursor on the character where you clicked.
This mode is enabled by default or when you include the n flag in your mouse option.

Normal mode provides a straightforward and easy method to position the cursor,
but it offers only clunky support for moving beyond the top or bottom of the visible
window. Click and hold the mouse and slide to the top or bottom of a window;
gvim will scroll up and down correspondingly. If scrolling stops, move the mouse
back and forth sideways to make it resume. (It’s not clear why normal mode acts
this way.)

Another drawback to normal mode is that users, especially beginners, can come
to rely on point and click as the positioning method of choice. This can hold back
their motivation to learn Vim’s navigation commands, and hence its power-editing
methods. Finally, it creates the same potential confusion as insert mode.

Additionally, gvim offers visual mode, also known as select mode. This mode is enabled
by default, or when you include the v flag in your mouse option. Visual is the most
versatile mode, because it lets you select text by dragging the mouse, which highlights
the selection. It can be used in combination with command, insert, and normal modes.

Any combination of flags can be specified in the mouse option. The syntax to use is
illustrated by the following commands:

:set mouse=""
Disable all mouse behavior.

:set mouse=a
Enable all mouse behavior (the default).

:set mouse+=v
Enable visual mode (v). This example uses the += syntax to add a flag to the current
mouse setting.

:set mouse-=c
Disable mouse behavior in command mode (c). This example uses the -= syntax
to remove a flag from the current mouse setting.

Beginners may prefer more “on” settings, whereas experts may turn the mouse off
completely (as the author of this chapter does).

If you use the mouse, we recommend choosing a familiar behavior through
gvim’s :behave command, which accepts either mswin or xterm as an argument. As sug-
gested by the names of the arguments, mswin will set options to closely mimic Windows
behavior, whereas xterm mimics a window on the X Window System.

Vim has a number of other mouse options, including mousefocus, mousehide,
mousemodel, and selectmode. For more information, refer to the Vim built-in documen-
tation for these options.

222 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


If you have a mouse with a scroll wheel, gvim handles it well by default, scrolling the
screen or window up and down predictably, regardless of how you set the mouse option.

Useful Menus
One nice touch gvim brings to the GUI environment is menu actions that simplify some
of Vim’s more esoteric commands. There are two worth mentioning.

gvim’s Window menu

gvim’s Window menu contains many of the most useful and common Vim window
management commands: commands that split a single GUI window into multiple dis-
play areas. You may find it worth “tearing off” this menu, as shown in Figure 13-1, so
that you can conveniently open and bounce around among windows. The result is
shown in Figure 13-2.

gvim’s right-click pop-up menu

gvim pops up the menu shown in Figure 13-3 when you right-click within a buffer you’re
editing.

If any text is selected (highlighted), another menu pops up when you right-click, as
shown in Figure 13-4.

Figure 13-1. gvim Window menu

General Introduction to gvim | 223

www.it-ebooks.info

http://www.it-ebooks.info/


Notice how the menu in Figure 13-3 is moved and floats over completely unrelated
application. This is a nice way to have an often-used menu conveniently available but
out of the way of the editing. Both of these are handy for common select, cut, copy,
delete, and paste operations. Users of other GUI editors employ this kind of feature all
the time, but this is useful even for long-time Vim users. It is especially useful in that it
interacts with the Windows clipboard in a predictable way.

Figure 13-2. gvim Window menu, torn off and floating

Figure 13-3. gvim general editing menu

224 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


Customizing Scrollbars, Menus, and Toolbars
gvim provides the usual GUI widgets, such as scrollbars, menus, and toolbars. Like most
modern GUI applications, these widgets are customizable.

The gvim window, by default, shows several menus and a toolbar at the top, as illus-
trated by Figure 13-5.

Scrollbars
Scrollbars, which let you navigate up and down or right and left quickly through a file,
are optional in gvim. You can display or hide them with the guioptions option, described
at the end of this chapter in “GUI Options and Command Synopsis” on page 237.

Because Vim’s standard behavior is to show all text in the file (wrapping lines in the
window if necessary), it’s interesting to note that the horizontal scrollbar serves no
purpose in typically configured gvim sessions.

Turn the left and right scrollbars on and off by including or excluding r or l in the
guioptions option. l makes sure the screen always has a left scrollbar, whereas r makes

Figure 13-4. gvim editing menu when text is selected

Figure 13-5. Top of gvim window

Customizing Scrollbars, Menus, and Toolbars | 225

www.it-ebooks.info

http://www.it-ebooks.info/


it always have a right scrollbar. The uppercase variants L and R tell gvim to show left or
right scrollbars only when there is a vertically split window.

The horizontal scrollbar is controlled by including or excluding b in the guioptions
option.

And yes, you can scroll the right and left scrollbars at the same time! More precisely,
scrolling either one causes the other to move in the corresponding direction. It can be
pretty convenient to have scrollbars configured on both sides. Depending upon where
your mouse is positioned, you simply click and drag the nearest scrollbar.

Many options, including guioptions, control many behaviors, and thus
can include many flags by default. New flags could even be added in
future versions of gvim. Hence, it is important to use the += and -= syntax
in the :set guioptions command, to avoid deleting desirable behaviors.
For example, :set guioptions+=l adds the “scrollbar always on left”
option to gvim, leaving the other components in the guioptions string
intact.

Menus
gvim has a fully customizable menu feature. In this section we describe the default menu
characteristics, which appeared earlier in Figure 13-5, and show how you can control
the menu layout.

Figure 13-6 shows one example of using a menu. In this case we’re choosing Global
Settings from the Edit menu.

It’s interesting to note these menu options are merely wrappers for Vim commands. In
fact, that is exactly how you can create and customize your own menu entries, which
we discuss shortly.

Notice that if you pay attention to the menus, including the keystrokes
or commands shown on the right side, you can learn Vim commands
over time. For example, in Figure 13-6, although it’s handy for beginners
to find the familiar Undo command in the Edit menu, where it appears
in other popular applications, it is much faster and easier to use the Vim
u keystroke, which is shown in the menu.

As shown in Figure 13-6, each menu starts with a dashed line containing a picture of
scissors. Clicking this line “tears off” the menu to create a free-standing window in
which that submenu’s options are available without going to the menu bar. If you
clicked the dashed line above the Toggle Pattern Highlight menu in Figure 13-6, you
would see something like Figure 13-7. You can position the free-floating menu any-
where on your desktop.

226 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


Now, all of the commands on this submenu are immediately available with just one
click in the submenu’s window. Each menu selection is mapped to a button. If a menu
selection itself is a submenu, it is represented by a button with greater-than signs (which
look like rightward-pointing arrows) at the right side of the button. Clicking these
arrows expands the submenu.

Basic menu customization

gvim stores menu definitions in a file named $VIMRUNTIME/menu.vim.

Defining menu items is similar to mapping. As you saw in the section “Using the map
Command” on page 104, you can map a key like this:

:map <F12> :set syntax=html<CR>

Figure 13-6. Cascading Edit menu

Customizing Scrollbars, Menus, and Toolbars | 227

www.it-ebooks.info

http://www.it-ebooks.info/


Menus are handled very similarly.

Suppose that, rather than map F12 to set the syntax to html, we want a special “HTML”
entry on our File menu to do this task. Use the :amenu command:

:amenu File.HTML :set syntax=html<CR>

The four characters <CR> are to be typed as shown, and are part of the command.

Now look at your file menu. You should see a new HTML entry, as shown in Fig-
ure 13-8. By using amenu instead of menu, we ensure that the entry is available in all
modes (command, insert, and normal).

The menu command adds the entry to the menu only in command mode;
the entry does not appear in insert and normal modes.

The location for a menu entry is specified by a series of cascading menu entries sepa-
rated by periods (.). In our example, File.HTML added the menu entry “HTML” to the
File menu. The last entry in the series is the one you want to add. Here we’ve added it
to an existing menu, but we’ll soon see that we can just as easily create a whole cascading
series of new menus.

Be sure to test your new menu selection. For example, we started editing a file that Vim
treats as an XML file, as can be seen in the status line in Figure 13-9. We’ve customized

Figure 13-7. Tearing off a menu

228 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


the status line so that Vim and gvim display the currently active syntax on the far right.
(See “A Nice Vim Piggybacking Trick” on page 202.)

After invoking our new HTML menu item, the Vim status line verifies that the menu
item worked and that the syntax is now HTML. See Figure 13-10.

Notice that the HTML menu item we added doesn’t have a shortcut or command on
the righthand side. So let’s redo the menu addition and include this nice enhancement.

First, delete the existing entry:

:aunmenu File.HTML

Figure 13-8. HTML menu item under File menu

Figure 13-9. Status line showing XML syntax before new menu action

Figure 13-10. Status line showing HTML syntax after new menu action

Customizing Scrollbars, Menus, and Toolbars | 229

www.it-ebooks.info

http://www.it-ebooks.info/


If you add a menu entry for command mode only using the menu com-
mand, you can remove it using unmenu.

Next, add a new HTML menu item that displays the command you associated to the
item:

:amenu File.HTML<TAB>syntax=html<CR> :set syntax=html<CR>

The specification of the menu entry is now followed by <TAB> (typed literally) and
syntax=html<CR>. In general, to display text on the righthand side of the menu, place it
after the string <TAB> and terminate it with <CR>. Figure 13-11 shows the resulting File
menu.

If you want spaces in the descriptive text of the menu item (or in the
menu name itself), quote the spaces with backslashes (\). If you don’t,
Vim uses everything after the first space character for the definition of
the menu action. In the previous example, if we wanted :set
syntax=html instead of just syntax=html for the descriptive text,
the :amenu command would have to be:

:amenu File.HTML<TAB>set\ syntax=html<CR> :set syntax=html<CR>

Figure 13-11. HTML menu item, displaying associated command

230 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


In most cases, it’s probably best not to modify the default menu definitions, but instead
to create separate and independent entries. This requires defining a new menu at the
root level, but this is just as simple as adding an entry to an existing menu.

Continuing our example, let’s create a new menu tree called MyMenu on the menu bar,
and then add an HTML menu item to it. First, remove the HTML item from the File
menu:

:aunmenu File.HTML

Next, enter the command:

:amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>

Figure 13-12 shows how your menu bar may appear.

The menu commands offer more subtle control over where the menus appear and their
behavior, such as whether the command indicates any activity, or even whether the
menu item is visible. We discuss these possibilities further in the following section.

More menu customization

Now that we see how easy it is to modify and extend gvim’s menus, let’s look at more
examples of customization and control.

Our previous example didn’t specify where to put the new MyMenu menu, and gvim
arbitrarily placed it on the menu bar between Window and Help. gvim lets us control
the position with its notion of priority, which is simply a numerical value assigned to
each menu to determine where it goes on the menu bar. The higher this value is, the
further to the right the menu appears. Unfortunately, the way users think of priority is
the opposite of how it’s defined by gvim. To get priority straight, look back at the order
of menus in Figure 13-5 and compare it to gvim’s default menu priorities, as listed in
Table 13-1.

Table 13-1. gvim’s default menu priorities

Menu Priority

File 10

Edit 20

Tools 40

Syntax 50

Buffers 60

Window 70

Figure 13-12. Menu bar with “MyMenu” menu added

Customizing Scrollbars, Menus, and Toolbars | 231

www.it-ebooks.info

http://www.it-ebooks.info/


Menu Priority

Help 9999

Most users would consider File a higher priority than Help (which is why File is on the
left and Help on the right), but the priority of Help is higher. So, just think of the priority
value as an indication of how far to the right a menu appears.

You can define a menu’s priority by prepending its numeric value to the menu com-
mand. If no value is specified, a default value of 500 is assigned, which explains why
MyMenu ended up where it did in our earlier example: it landed between Window
(priority 70) and Help (priority 9999).

Assume we want our new menu to be between the File and Edit menus. We need to
assign MyMenu a numeric priority greater than 10 and less than 20. The following
command assigns a priority of 15, leading to the desired effect:

:15amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>

Once a menu exists, its position is fixed for an entire editing session and
does not change in response to additional commands that affect the
menu. For example, you cannot change a menu’s position by adding a
new item to it and prefixing the command with a different priority value.

To add some more confusion to priorities and menu placement, you can also control
item placement within a menu by specifying a priority. Higher-priority menu items
appear further down in the menu than lower-priority items, but the syntax is different
from priority definitions for menus.

We’ll extend one of our earlier menu examples here by assigning a very high value
(9999) to the HTML menu item, so that it appears at the bottom of the File menu:

:amenu File.HTML .9999 <TAB>syntax=html<CR> :set syntax=html<CR>

Why is there a period before 9999? You need to specify two priorities here, separated
by a period: one for File and one for HTML. We are leaving the File priority blank
because it’s a pre-existing menu and can’t be changed.

In general, priorities for a menu item appear between the item’s menu placement and
the item’s definition. For every level in the menu hierarchy, you must specify a priority,
or include a period to indicate that you’re leaving it blank. Thus, if you add an item
deep in the menu hierarchy—such as under Edit → Global Settings → Context lines→
Display—and you want to assign the priority 30 to the last item (Display), you would
specify the priority as ...30, and the placement together with the priority would look
like:

Edit.Global\ Settings.Context\ lines.Display ...30

As with menu priorities, menu item priorities are fixed once they are assigned.

232 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


Finally, you can control menu “whitespace” with gvim’s menu separators. Use the same
definition as you would to add a menu item, but instead of a command named “…”,
place a hyphen (-) before and after it.

Putting it all together

Now we know how to create, place, and customize menus. Let’s make our example a
permanent part of our gvim environment by adding the commands we discussed to
the .gvimrc file. The sequence of lines should look something like:

" add HTML menu between File and Edit menus
  15amenu MyMenu.XML<TAB>syntax=xml :set syntax=xml<CR>
  amenu .600 MyMenu.-Sep- :
  amenu .650 MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>
  amenu .700 MyMenu.XHTML<TAB>syntax=xhtml :set syntax=xhtml<CR>

We now have a top-level, personalized menu with three favorite syntax commands
quickly available to us. There are a few important things to note in this example:

• The first command ( ) uses the prefix 15, telling gvim to use priority 15. For an
uncustomized environment, this places the new menu between the File and Edit
menus.

• The subsequent commands ( , , and ) do not specify the priority, because once
a priority is determined, no other values are used.

• We’ve used the submenu priority syntax ( , , and ) after the first command to
ensure the correct order for each new item. Notice we started with the first defi-
nition of .600. This assures that the submenu item is placed behind the first one
we defined, because we didn’t assign that priority and it therefore defaulted to 500.

For even handier access, click on the “scissors” tear-off line to have your personalized
floating menu, as shown in Figure 13-13.

Toolbars
Toolbars are long strips of icons that allow quick access to program functions. On
Windows, for instance, gvim displays the toolbar shown in Figure 13-14 at the top of
the window.

Figure 13-13. Personalized floating tearoff menu

Customizing Scrollbars, Menus, and Toolbars | 233

www.it-ebooks.info

http://www.it-ebooks.info/


Table 13-2 shows the toolbar icons and their meanings.

Table 13-2. gvim toolbar icons and their meanings

Icon Description Icon Description

Open file dialog Find next occurence of search pattern

Save current file Find previous occurence of search
pattern

Save all files Choose saved edit session to load

Print buffer Save current edit session

Undo last change Choose Vim script to run

Redo last action Make current project with make
command

Cut selection to clipboard Build tags for current directory tree

Copy selection to clipboard Jump to tag under cursor

Paste clipboard into buffer Open help

Find and replace Search help

If these icons are not familiar or intuitive, you can make the toolbar show both text and
icons. Issue this command:

:set toolbar="text,icons"

As with many advanced features, Vim requires toolbar features to be
turned on during compilation so people who don’t want them can save
memory by not including them. The toolbar does not exist unless one
of the +GUI_GTK, +GUI_Athena, +GUI_Motif, or +GUI_Photon features is
compiled into your version of gvim. Chapter 9 explains how to recompile
Vim, during which the link to the gvim executable is created.

We modify the toolbar very much like we do menus. As a matter of fact, we use the
same :menu command, but with extra syntax to specify graphics. Although an algorithm
exists to help gvim find the icon associated with each command, we recommend ex-
plicitly pointing to the icon graphic.

Figure 13-14. gvim’s toolbar

234 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


gvim treats the toolbar as a one-dimensional menu. And, just as you control the right-
to-left position of new menus, you can control the position of new toolbar entries by
prefixing the menu command with a number that determines its positional priority.
Unlike menus, there is no notion of creating a new toolbar. All new toolbar definitions
appear on the single toolbar. The syntax for adding a toolbar selection is:

:amenu icon=/some/icon/image.bmp ToolBar.NewToolBarSelection   Action 

where /some/icon/image.bmp is the path of the file containing the toolbar button or
image (usually an icon) to display in the toolbar, NewToolBarSelection is the new entry
for the toolbar button, and Action defines what the button does.

For example, let’s define a new toolbar selection that, when clicked or selected, brings
up a DOS window in Windows. Assuming the Windows path is set up correctly (it
should be), we will define our toolbar selection to start a DOS window from within
gvim by executing the following (this is its Action):

:!cmd

For the new selection’s toolbar button, or image, we use an icon showing a DOS com-
mand prompt, shown in Figure 13-15, which on our system is stored in
$HOME/dos.bmp.

Figure 13-15. DOS icon

Execute the command:

:amenu icon="c:$HOME/dos.bmp" ToolBar.DOSWindow :!cmd<CR>

This creates a toolbar entry and adds our icon at the end of the toolbar. The toolbar
should now look like Figure 13-16. The new icon appears on the rightmost end of the
toolbar.

Figure 13-16. Toolbar with added DOS command

Tooltips
gvim lets you define tooltips for both menu entries and toolbar icons. Menu tooltips
display in the gvim command-line area when the mouse is over that menu selection.
Toolbar tooltips pop up graphically when the mouse hovers over a toolbar icon. For

Customizing Scrollbars, Menus, and Toolbars | 235

www.it-ebooks.info

http://www.it-ebooks.info/


example, Figure 13-17 shows the tooltip that pops up when we put the mouse over the
toolbar’s Find Previous button.

Figure 13-17. Tooltip for the Find Previous icon

The :tmenu command defines tooltips for both menus and toolbar items. The syntax is:

:tmenu TopMenu.NextLevelMenu.MenuItem tool tip text

where TopMenu.NextLevellMenu.MenuItem defines the menu as it cascades from the
top level all the way to the menu item for which you wish to define a tooltip. So, for
example, a tooltip for the Open menu item under the File menu would be defined with
the command:

:tmenu File.Open Open a file

Use ToolBar for the top-level “menu” if you are defining a toolbar item (there is no real
top-level menu for a toolbar).

Let’s define a pop-up tooltip for the DOS toolbar icon we created in the previous sec-
tion. Enter the command:

:tmenu ToolBar.DOSWindow Open up a DOS window

Now when you hover over the newly added toolbar icon, you can see the tooltip, as
shown in Figure 13-18.

Figure 13-18. Toolbar with added DOS command and its new tooltip

gvim in Microsoft Windows
gvim is increasingly popular among Windows users. Veteran vi and Vim users will find
the Windows version excellent, and it is probably the most current version across all
operating systems.

236 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


The self-installing executable should automatically and seamlessly in-
tegrate Vim into the Windows environment. If it doesn’t, consult the
gui-w32.txt help file in the Vim runtime directory for regedit instruc-
tions. Because this involves editing the Windows Registry, do not try it
if it’s a procedure with which you are the slightest bit uncomfortable.
You may be able to find someone with more expertise to help you. It is
a common but nontrivial exercise.

Long-time Windows users are familiar with the clipboard, a storage area where text and
other information is kept to facilitate copy, cut, and paste operations. Vim supports
interaction with the Windows clipboard. Simply highlight text in visual mode and click
the Copy or Cut menu item to store Vim text in the Windows clipboard. You can then
paste that text into other Windows applications.

gvim in the X Window System
Users familiar with the X environment can define and use many of the tunable X fea-
tures. For example, you can define many resources with the standard class definitions
typically defined in the .Xdefaults file.

Note that these standard X resources are useful only for the Motif or
Athena versions of the GUI. Obviously, the Windows version has no
understanding of X resources. Not so obviously, X resources are not
picked up by KDE or GNOME either.

A full discussion of X and how you configure and customize it has been exhaustively
documented elsewhere and is beyond the scope of this book. For a brief (or not so brief)
introduction to X, we suggest the X manpage.

GUI Options and Command Synopsis
Table 13-3 summarizes the commands and options specially associated with gvim.
These are added to Vim when it is compiled with GUI support, and they take effect
when it is invoked as gvim or vim -g.

Table 13-3. gvim-specific options

Command or option Type Description

guicursor Option Settings for cursor shape and blinking

guifont Option Names of single-byte fonts to be used

guifontset Option Names of multi-byte fonts to be used

guifontwide Option List of font names for double-wide characters

guiheadroom Option Number of pixels to leave for window decorations

gvim in the X Window System | 237

www.it-ebooks.info

http://www.it-ebooks.info/


Command or option Type Description

guioptions Option Which components and options are used

guipty Option Use a pseudo-tty for “:!” commands

guitablabel Option Custom label for a tab page

guitabtooltip Option Custom tooltip for a tab page

toolbar Option Items to show in the toolbar

-g Option Start the GUI (which also allows the other options)

-U gvimrc Option Use gvim startup file, named gvimrc or something sim-
ilar, when starting the GUI

:gui Command Start the GUI (on Unix-like systems only)

:gui filename... Command Start the GUI and edit the specified files

:menu Command List all menus

:menu menupath Command List menus starting with menupath

:menu menupath action Command Add menu menupath, to perform action action

:menu n menupath action Command Add menu menupath with positional priority of n

:menu ToolBar.toolbarname action Command Add toolbar item toolbarname to perform action
action

:tmenu menupath text Command Create tooltip for menu item menupath with text of
text

:unmenu menupath Command Remove menu menupath

238 | Chapter 13: Graphical Vim (gvim)

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 14

Vim Enhancements for Programmers

Text editing is only one of Vim’s strong suits. Good programmers demand powerful
tools to ensure efficient and proficient work. A good editor is only a start and, by itself,
isn’t enough. Many modern programming environments attempt to provide compre-
hensive solutions when all that is really necessary is a strong editor with some extra
smarts.

Programming tools offer extra features ranging from editors with syntax coloring, auto
indentation and formatting, keyword completion, and so on, to full-blown Integrated
Development Environments (IDEs) with sophisticated integration that build up com-
plete development ecosystems. These IDEs can be expensive (e.g., Visual Studio) or 
free (Eclipse), but their disk and memory requirements are large, their learning curves
steep, and their demand for resources immense.

Programmers’ tasks vary, and so do their technology requirements. Small development
tasks are easily completed with simple editors that offer little more than text editing
capabilities. Large, multicomponent, multiplatform, and multistaff efforts almost de-
mand the heavy lifting IDEs provide. But from anecdotal experience, many veteran
programmers feel that IDEs offer little more than extra complexity with no higher
probability of success.

Vim strikes a nice compromise between simple editors and monolithic IDEs. It has
features that until recently were available only in expensive IDEs. It lets you do quick
and simple programming tasks without the overhead and learning curve of an IDE.

The many options, features, commands, and functions especially suited to making the
programmer’s life easier range from folding lines of code into one line, to syntax col-
oring, to automatic formatting. Vim affords programmers many tools that can be fully
appreciated only by using them. At the high end, it offers a sort of mini-IDE called
Quickfix, but it also has convenience features specific to various programming tasks.
We present the following topics in this chapter:

• Folding

• Auto and smart indenting

239

www.it-ebooks.info

http://www.it-ebooks.info/


• Keyword and dictionary word completion

• Tags and extended tags

• Syntax highlighting

• Syntax highlight authoring (roll your own)

• Quickfix, Vim’s mini-IDE

Folding and Outlining (Outline Mode)
Folding lets you define what parts of the file you see. For instance, in a block of code
you can hide anything within curly braces, or hide all comments. Folding is a two-stage
process. First, using any of several fold methods (we’ll talk more about these later), you
define what constitutes a block of text to fold. Then, when you use a fold command,
Vim hides the designated text and leaves in its place a one-line placeholder. Fig-
ure 14-1 shows what folds look like in Vim. You can manage the lines hidden by the
fold with the fold placeholder.

In the example, line 11 is hidden by a two-line fold starting with line 10. An eight-line
fold starting at line 15 hides lines 16 through 22. And a four-line fold starting at line
26 hides lines 27 through 29.

There are virtually no limits on how many folds you can create. You can even create
nested folds (folds within folds).

Several options control how Vim creates and displays folds. Also, if you’ve taken the
time to create many folds, Vim provides the convenience commands :mkview

Figure 14-1. Example of Vim folds

240 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


and :loadview to preserve folds between sessions so you don’t have to create them
again.

Folds require some effort to learn but, when mastered, add a powerful way to control
what to display and when. Do not underestimate the power this brings. Correct and
maintainable programs require robust design at several levels, so good programming
often requires looking at the forest rather than the trees—in other words, ignoring
details of implementation in order to see the overall structure of a file.

For power users, Vim offers six different ways to define, create, and manipulate folds.
This flexibility lets you create and manage folds in different contexts. Ultimately, once
created, folds open and close and behave similarly for the whole suite of fold
commands.

The six methods of creating folds are:

manual
Define the span of a fold with standard Vim constructs, such as motion commands.

indent
Folds and fold levels correspond to the indentation of text and the value of the
option shiftwidth.

expr
Regular expressions define folds.

syntax
Folds correspond to the semantics of a file’s language (e.g., a C program’s function
blocks could fold).

diff
The differences between two files define folds.

marker
Predefined (but also user-definable) markers in the file specify fold boundaries.

The manipulation of folds (opening and closing, deleting, etc.) is the same for all meth-
ods. We’ll examine manual folds and discuss Vim fold commands in detail. We address
some details for the other methods, but they are complex, specialized, and beyond the
scope of this introduction. We hope our coverage will prompt you to explore the rich-
ness of these other methods.

So, let’s take a brief look at the important fold commands and go through a short
example of what folds look like.

The Fold Commands
Fold commands all begin with z. As a mnemonic to remember this, think of the side
view of a folded piece of paper (when folded correctly) and how it looks like the letter
“z.”

Folding and Outlining (Outline Mode) | 241

www.it-ebooks.info

http://www.it-ebooks.info/


There are about 20 z fold commands. With these commands you create and delete
folds, open and close folds (hide and expose text belonging to folds), and toggle the
expose/hide state of the folds. Here are short descriptions:

zA
Toggle the state of folds, recursively.

zC
Close folds, recursively.

zD
Delete folds, recursively.

zE
Eliminate all folds.

zf
Create a fold from the current line to the one where the following motion command
takes the cursor.

countzF
Create a fold covering count lines, starting with the current line.

zM
Set option foldlevel to 0.

zN, zn
Set (zN) or reset (zn) the foldenable option.

zO
Open folds, recursively.

za
Toggle the state of one fold.

zc
Close one fold.

zd
Delete one fold.

zi
Toggle the value of the foldenable option.

zj, zk
Move cursor to the start (zj) of the next fold or to the end (zk) of the previous fold.
(Note the mnemonic of the j (“jump”) and k motion commands and how they are
analogous to motions within the context of folds.)

zm, zr
Decrement (zm) or increment (zr) the value of the foldlevel option by one.

zo
Open one fold.

242 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


Don’t confuse delete fold with the delete command. Use the delete fold
command to remove, or undefine, a fold. A deleted fold has no effect
on the text contained in that fold.

zA, zC, zD, and zO are called recursive because they operate on all folds nested within
the one where you issue the commands.

Manual Folding
If you know Vim motion commands, you already know half of what you must learn to
be proficient with manual fold commands.

For example, to hide three lines in a fold, enter either of the following:

3zF
2zfj

3zf executes the zF folding command over three lines, starting with the current one.
2zfj executes the zf folding command from the current line to the line where j moves
the cursor (two lines down).

Let’s try a more sophisticated command of use to C programmers. To fold a block of
C code, position the cursor over the beginning or ending brace ({ or }) of a block of
code and type zf%. (Remember that % moves to the matching brace.)

Create a fold from the cursor to the beginning of file by typing zfgg. (gg goes to the
beginning of the file.)

It is easier to understand folds by seeing an example. We’ll take a simple file, create
and manipulate folds, and watch the behavior. We’ll also see some of the enhanced
visual folding cues that Vim provides.

First consider the example file in Figure 14-2, which contains some (meaningless) lines
of C code. Initially, there are no folds.

There are a few things to note in this picture. First, Vim displays line numbers on the
left side of the screen. We recommend that you always turn them on (using the
number option) for added visual information about file location, and in this context the
information becomes more valuable when you fold lines out of view. Vim tells you how
many lines are not displayed, and the line numbers confirm and reinforce that
information.

Also notice the gray columns to the left of the line numbers. These columns are reserved
for more folding visual cues. As we create and use folds, we will see the visual cues Vim
inserts into these columns.

In Figure 14-2, notice that the cursor is on line 18. Let’s fold that line and the two
following lines into one fold. We type zf2j. Figure 14-3 shows the result.

Folding and Outlining (Outline Mode) | 243

www.it-ebooks.info

http://www.it-ebooks.info/


Notice how Vim creates an easily identified marker with the +-- as a prefix, and how
it displays text from the first folded line in the fold placeholder. Now notice the far left
side of the screen where Vim inserted the +. This is another visual cue.

In the same file, we’ll next fold the block of code between and including the braces after
the if statement. Position the cursor on either one of the braces and type zf%. The file
now appears as in Figure 14-4.

Figure 14-2. Sample file with no folds

Figure 14-3. Three lines folded at line 18

244 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


Now there are eight lines of code folded, three of which are contained in a fold already
created. This is called a nested fold. Note there is no indication of the nested fold.

Our next experiment is to position the cursor on line 25 and fold all lines up to and
including the function declaration for fcn. This time we use the Vim search motion.
We initiate the fold command with zf, search backward to the beginning of the fcn
function using ?int fcn (the backward search command in Vim), and press the EN-
TER  key. The screen now looks like Figure 14-5.

If you count lines and create a fold that spans another fold (for example,
3zf), all lines contained in the spanned fold count as one line. For ex-
ample, if the cursor is on line 30, and lines 31–35 are hidden in a fold
on the next screen line, so that the next line on the screen displays line
36, 3zf creates a new fold containing three lines as they appear on the
screen: the text line 30, the five lines contained in the fold holding lines
31–35, and the text line 36 displayed in the next line on the screen.
Confusing? A little. You might say that the zf command counts lines in
accordance with the rule, “What you see is what you fold.”

Figure 14-4. Block of code folded following an if statement

Figure 14-5. Folding to the beginning of a function

Folding and Outlining (Outline Mode) | 245

www.it-ebooks.info

http://www.it-ebooks.info/


Let’s try some other features. First, open all the folds with the command zO (that’s z
followed by the letter O, not z followed by a zero). Now we start seeing some visual
cues in the left margin about the folds we made, as shown in Figure 14-6. Each of the
columns in this margin is called a foldcolumn.

In this figure, the first line of each fold is marked with a minus sign (–), and all the other
lines of the fold are marked by a vertical bar or pipe character (|). The largest (outer-
most) fold is in the leftmost column, and the innermost fold is in the rightmost column.
As you see in our picture, lines 5–25 represent the lowest fold level (in this case, 1),
lines 15–22 represent the next fold level (2), and lines 18–20 represent the highest fold
level.

By default, this helpful visual metaphor is turned off (we don’t know
why; perhaps because it uses up screen space). Turn it on and define its
width with the following command:

:set foldcolumns=n

where n is the number of columns to use (maximum is 12, default is 0).
In the figure, we use foldcolumn=5. (For those paying close attention,
yes, the earlier figures had foldcolumn set to 3. We changed the value
for a better visual presentation.)

Now create more folds to observe their effects.

Figure 14-6. All folds opened

246 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


First, refold the deepest fold, which covers lines 18–20, by positioning the cursor on
any line within the range of that fold and typing zc (close fold). Figure 14-7 shows the
result.

See the change in the gray margin? Vim maintains the visual cues, making visualization
and management of your folds easy.

Now let’s see what a typical “one line” command does to a fold. Position the cursor on
the folded line (18). Type ~~ (toggle case for all characters in the current line). Remem-
ber that in Vim, ~ is an object operator (unless the compatible option is set) and therefore
should toggle the case of all the characters in the line for this example. Next, open the
fold by typing zo (open fold). The code now looks like Figure 14-8.

This is a powerful feature. Line commands or operators act on the entire text repre-
sented by a fold line! Admittedly this may seem like a contrived example, but it illus-
trates nicely the potential of this technique.

Figure 14-7. After refolding lines 18–20

Figure 14-8. Case change applied to a fold

Folding and Outlining (Outline Mode) | 247

www.it-ebooks.info

http://www.it-ebooks.info/


Any action on a fold affects the whole fold. For instance, in Fig-
ure 14-7, if you position the cursor over line 18—a fold hiding lines 18
through 20—and type dd (delete line), all three lines are deleted and the
fold is removed.

It’s also important to note that Vim manages all edit actions as if there
were no folds, so any undos will undo an entire edit’s action. So, if we
typed u (undo) after the previous change, all three lines that had been
deleted would be restored. The undo feature is separate from the “one
line” actions discussed in this section, although sometimes they seem
to act similarly.

Now is a good time to familiarize yourself with the visual cues in the foldcolumn margin. 
They make it easy to see what fold you are about to act on. For example, the zc (close
fold) command closes the innermost fold containing the line the cursor is on. You can
see how large this fold is through the vertical bars in the foldcolumns. Once mastered,
actions such as opening, closing, and deleting folds become second nature.

Outlining
Consider the following simple (and contrived) file using tabs for indentation:

1. This is Headline ONE with NO indentation and NO fold level.
    1.1 This is sub-headline ONE under headline ONE
        This is a paragraph under the headline.  Its fold
        level is 2.
    1.2 This is sub-headline TWO under headline ONE.
2. This is Headline TWO.  No indentation, so no folds!
    2.1 This is sub-headline ONE under headline TWO.
        Like the indented paragraph above, this has fold level 2.
            - Here is a bullet at fold level 3.
                A paragraph at fold level 4.
            - Here is the next bullet, again back at fold level 3.
        And, another set of bullets:
            - Bullet one.
            - Bullet two.
    2.2 This is heading TWO under Headline TWO.
3. This is Headline THREE.

You can use Vim folds to look at your file as a pseudo-outline. Define your folding
method as indent:

:set foldmethod=indent

In our file we define the shiftwidth (the indentation level for tabs) to be 4. Now we can
open and close folds based on indentation of lines. For each shiftwidth (a multiple of
four columns in this case) to a line that is indented, its fold level increases by 1. For
example, the subheadlines in our file are indented one shiftwidth, or four columns,
and hence have a fold level of 1. Lines indented eight columns (two shiftwidths) have
a fold level of 2, etc.

248 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


You can control the level of folds you see with the foldlevel command. It takes an 
integer as its argument and displays only lines whose fold levels are less than or equal
to the argument. In our file we can ask to view only the highest-level headings with:

:set foldlevel=0

and our screen now looks like Figure 14-9. 

Display everything up to and including the bullets by setting foldlevel to 2. Everything
with a fold level greater than or equal to 2 is then displayed, as in Figure 14-10. 

Using this technique to inspect your file, you can quickly expand and collapse the level
of detail you see with Vim’s fold increment (zr) and decrement (zm) commands.

A Few Words About the Other Fold Methods
We don’t have time to cover all of the other fold methods, but to whet your appetite,
we invite you to take a quick peek at the syntax folding method.

We use the same C file as before, but this time we let Vim decide what to fold based
on C syntax. The rules governing folding within C are complex, but this simple snippet
of code suffices to demonstrate Vim’s automatic capabilities.

First, make sure to get rid of all folds by typing zD (delete all folds). The screen now
displays all code with no visual markers in the fold column.

Figure 14-9. fold level = 0

Figure 14-10. fold level = 2

Folding and Outlining (Outline Mode) | 249

www.it-ebooks.info

http://www.it-ebooks.info/


Make sure folding is turned on with the command:

:set foldenable

(You didn’t need to do this before for manual folding, because foldenable was auto-
matically set when foldmethod was set to manual.) Now type the command:

:set foldmethod=syntax

The folds appear as in Figure 14-11.

Vim folded all bracketed blocks of code, because those are logical semantic blocks in
C. If you type zo on line 6 of this example, Vim expands the fold and reveals the inner
fold.

Each fold method uses different rules to define folds. We encourage you to roll up (fold
up?) your sleeves and read more on these powerful methods in the Vim documentation.

The Vim diff mode (also invoked through the vimdiff command) is a powerful com-
bination of folding, windowing, and syntax highlighting, a feature we discuss later. As
illustrated in Figure 14-12, the mode shows the differences between files, usually
between two versions of the same file.

Figure 14-11. After the command set foldmethod=syntax

Figure 14-12. Vim diff feature and its use of folds

250 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


Auto and Smart Indenting
Vim offers four increasingly complex and powerful methods to automatically indent
text. In its simplest form, Vim behaves almost identically to vi’s autoindent option,
and indeed it uses the same name to describe the behavior.

You can choose the indentation method simply by specifying it in a :set command,
such as:

:set cindent

Vim offers the following methods, listed in order of increasing sophistication:

autoindent
Auto indentation closely mimics vi’s autoindent. It differs subtly as to where the
cursor is placed after indentation is deleted.

smartindent
Slightly more powerful than autoindent, but it recognizes some basic C syntax
primitives for defining indentation levels.

cindent
As its name implies, cindent embodies a much richer awareness of C syntax and
introduces sophisticated customization beyond simple indentation levels. For ex-
ample, cindent can be configured to match your (or your boss’s) favorite coding
style rules, including but not limited to how braces ({}) indent, where braces are
placed, whether either or both braces are indented, and even how indentation
matches included text.

indentexpr
Lets you define your own expression, which Vim evaluates in the context of each
new line you begin. With this feature, you write your own rules. We refer you to
the discussions of scripting and functions in this book and to the Vim documen-
tation for details. If the other three options don’t give you enough flexibility for
automatic indentation, indentexpr certainly will.

Vim autoindent Extensions to vi’s autoindent
autoindent for Vim behaves almost like vi’s and can be made identical by setting the
compatible option. One nice extension to vi’s autoindent is Vim’s ability to recognize
a file’s “type” and insert appropriate comment characters when comment lines in a file
wrap to a new line. This feature works cooperatively with either the wrapmargin (text
wraps within wrapmargin columns of the right margin) or textwidth (text wraps when
characters in a line exceed textwidth characters) options. Figure 14-13 shows the results
of identical inputs, one using Vim’s autoindent and the other using vi.

Notice that in the second block of text (line 16 and beyond) there is no leading comment
character. Also, with the compatible option set (to mimic vi’s behavior), the

Auto and Smart Indenting | 251

www.it-ebooks.info

http://www.it-ebooks.info/


textwidth option isn’t recognized, and now the text wraps only because option
wrapmargin has a value.

smartindent
smartindent extends autoindent, slightly. It’s useful, but if you are writing code in a C-
like programming language with a fairly complex syntax, you are better served by using
cindent instead.

smartindent automatically inserts indents when:

• A new line follows a line with a left brace ({).

• A new line begins with a keyword that’s contained in the option cinwords.

• A new line is created preceding a line starting with a right brace (}), if the cursor
is positioned on the line containing the brace and the user creates a new line using
the O (open line above) command.

• A new line is a closing, or right, brace (}).

cindent
Regular Vim users who program in C-like languages will want to use either cindent or
indentexpr for coding. Although indentexpr is more powerful, flexible, and customiz-
able, cindent is more practical for most programming tasks. It has plenty of settings for
most programmers’ needs (and corporate standards). Try it for a while with its default
settings, and then customize it if your standards differ.

Figure 14-13. Difference between Vim and vi autoindent

252 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


If the indentexpr option has a defined value, it overrides cindent’s
actions.

Three options define cindent’s behavior:

cinkeys
Defines keyboard keys that signal Vim to reevaluate indentation

cinoptions
Defines the indentation style

cinwords
Defines keywords that signal when Vim should add an extra indent in subsequent
lines

cindent uses the string defined by cinkeys as its ruleset to define how to indent. We’ll
examine the default value of cinkeys and then look at other settings you can define and
how they work.

The cinkeys option

cinkeys is a comma-separated list of values:

0{,0},0),:,0#,!^X^F,o,O,e

Here are the values, broken into their separate contexts, with brief descriptions for each
behavior:

0{
0 (zero) sets a beginning of line context for the following character, {. That is, if you
type the character { as the first character of a line, Vim will reevaluate the inden-
tation for that line.

Do not confuse the zero in this option with the behavior “use zero indentation
here,” a common practice in C indentation. The zero here means “if the character
is typed at the beginning of the line,” not “force the character to appear at the
beginning of the line.”

The default indentation for { is zero: no added indentation beyond the current
level. The following example shows typical results:

main ()
{
    if ( argv[0] == (char *)NULL )
    { ...

0}, 0)
As in the previous description, these two settings define beginning of line context.
Thus, if you type either } or ) at the beginning of a line, Vim reevaluates indentation.

Auto and Smart Indenting | 253

www.it-ebooks.info

http://www.it-ebooks.info/


The default indentation for } matches the indentation defined for its matching open
brace {.

The default indentation for ) is one shiftwidth.

:
This is the C label or case statement context. If a : (colon) is typed at the end of a
label or case statement statement, Vim reevaluates indentation.

The default indentation for : is column 1, the first column in a line. Do not confuse
this with zero indentation, which leaves the new line at the same indentation level
as the previous one. When the indentation is 1, the first character of a new line is
shifted left all the way to the first column.

0#
Again, this is a beginning of line context. When # is the first character typed in a
line, Vim reevaluates indentation.

Default indentation, as in the previous definition, shifts the entire line to the first
column. This is consistent with the practice of beginning macros (#define...) in
column 1.

!^F
The special character ! defines any following character as a trigger to reevaluate
the indentation in the current line. In this case, the triggering character is ̂ F, which
stands for CTRL-F , so the default behavior is for Vim to reevaluate a line’s inden-
tation any time you type CTRL-F .

o
This context defines any new line you create, whether by pressing the ENTER  key
in insert mode or by using the o (open new line) command.

O
This context covers the creation of a new line above the current line using the O
(open new line above) command.

e
This is the else context. If you begin a line with the word else, Vim reevaluates
indentation. Vim does not recognize this context until the final “e” of else is typed.

cinkeys syntax rules. Each cinkeys definition consists of an optional prefix (one
of !, *, or 0) and the key for which indentation is reevaluated. The prefixes have the
following meanings:

!
Indicates a key (default CTRL-F ) that causes Vim to reevaluate indentation on the
current line. You can add an additional key definition as a command (by using the
+= syntax) without overriding the preexisting command. In other words, you can
provide multiple keys to trigger line indentation. Any key you add to the ! definition
still performs its old function as well.

254 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


*
Tells Vim to reevaluate the current line indentation before inserting the key.

0
Sets a beginning of line context. The key you specify after the 0 triggers a reevalu-
ation of indentation only when typed as the first character of a line.

Be aware of the distinction in vi and Vim between “first character
in a line” and “first column in a line.” You already know that typing
^ moves to the first character of a line, not necessarily the first col-
umn (flush left); the same is true of inserting with I. In the same
way, the 0 prefix applies to entering a character as the first character
in a line, regardless of whether it is flush left.

cinkeys has special key names and provides ways to override any reserved characters,
such as those used as prefix characters. Here are the special key options:

<>
Use this form to define keys literally. For special nonprinting keys, use the spelled-
out versions. For example, you can define the literal character “:” with <:>. Another
example for a nontyping key is to define the “up arrow” as <Up>.

^
Use the caret (^) to signify a control character. For example, ^F defines the key
CTRL-F .

o, O, e, :
We saw these special keys in the default value for cinkeys.

=word, =~word
Use these to define a word that should receive special behavior. Once the string
word is matched, if it is the first text on a new line, Vim reevaluates indentation.

The form =~word is the same as =word except that it ignores case.

The term word is an unfortunate misnomer. More properly, it rep-
resents beginning of word, because the trigger occurs as soon as the
string matches, but it does not require that the matched end of
string also be the end of word. Vim’s built-in documentation gives
the example of end matching both end and endif.

The cinwords option

cinwords defines keywords that, when typed, trigger extra indentation on the following
line. The option’s default value is:

if,else,while,do,for,switch

This covers the standard keywords in the C programming language.

Auto and Smart Indenting | 255

www.it-ebooks.info

http://www.it-ebooks.info/


These keywords are case-sensitive. In checking for them, Vim even ig-
nores the setting of the ignorecase option. If you need variations for
different cases of keywords, you must specify all combinations in the
cinwords string.

The cinoptions option

cinoptions controls how Vim reindents lines of text in their C context. It includes
settings to control a number of code formatting standards, such as:

• How far to indent a code block enclosed by braces

• Whether to insert a newline in front of a brace that follows a condition statement

• How to align blocks of code relative to their enclosing braces

cinoptions defines 28 settings with its default value:

s,e0,n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(2s,us,U0,w0,W0,
    m0,j0,)20,*30

The very length of the option gives you a sense of how many ways Vim lets you cus-
tomize indentation. Most customization with cinoptions defines slight differences in
context blocks. Some customizations define how far to scan (how many lines forward
and backward in the file to go) in order to establish the right context and properly
evaluate indentation.

Settings that alter the amount of indentations for various contexts can increase or de-
crease levels of indentation. Also, you can redefine the number of columns to use for
indentation. For example, setting cinoptions=f5 causes an opening brace ({) to be
indented five columns, so long as it is not inside any other braces.

Another way to define increments of indentation is by some multiplier (which doesn’t
have to be an integer) of shiftwidth. If, in the previous example, you append w to the
definition (i.e., cinoptions=f5w), the opening brace shifts five shiftwidths.

Insert a minus sign (-) before any numeric value to alter the indentation level to the left
(a negative indentation).

This option and its string value is one to modify with great care. Re-
member that when you use = syntax, you redefine an option completely.
Because cinoptions carries so many possible settings, use very fine-
grained commands to make changes: += to add a setting, -= to remove
an existing setting, and -= followed by += to change an existing setting.

The following is a brief list of the options you are most likely to change. It is a small
subset of the settings in cinoptions, and many readers may find the other (or even all)
settings useful to customize.

256 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


>n (default is s)
Any line where indentation is indicated should be indented n places. The default
for this is s, meaning that the default indentation for a line is one shiftwidth.

fn, {n
The f defines how far to indent an opening unnested brace ({). The default value
is zero, thus aligning braces with their logical counterpart. For example, a brace
following a line with a while statement is placed under the “w” of the while.

The { behaves the same way as the f but applies to nested opening braces. Again,
this one defaults to an indent level of zero.

Figures 14-14 and 14-15 show two examples of identical text entry in Vim, the first
example with cinoptions=s,f0,{0, and the second with cinoptions=s,fs,{s. For
both examples, option shiftwidth has the value 4 (four columns).

}n
Use this setting to define a closing brace’s (}) offset from its matching brace. The
default is zero (aligned with the matching brace).

^n
Add n to the current indentation inside a set of braces ({...}) if the opening brace
is in column one.

:n, =n, bn
These three control indentation in case statements. With :, Vim indents case labels
n characters from the position of its corresponding switch statement. The default
is one shiftwidth.

Figure 14-14. cinoptions=s,f0,{0

Figure 14-15. cinoptions=s,fs,{s

Auto and Smart Indenting | 257

www.it-ebooks.info

http://www.it-ebooks.info/


The = setting defines the offset for lines of code from their corresponding case label.
The default is to indent statements one shiftwidth.

The b setting defines where to place break statements. The default (zero) aligns
break with the other statements within the corresponding case block. Any nonzero
value aligns the break with its corresponding case label.

)n, *n
These two settings tell Vim how many lines to scan to find unclosed parentheses
(default is 20 lines) and unclosed comments (default is 30 lines), respectively.

Ostensibly, these two settings limit how hard Vim has to work to
look for matches. With today’s powerful computers, you should
consider ratcheting these values up to assure more complete scope
management to match comments and parentheses. Try doubling
each to 40 and 60 as a starting point.

indentexpr
indentexpr, if defined, overrides cindent so that you can define indentation rules and
tailor them exactly to your language editing needs.

indentexpr defines an expression to be evaluated each time a new line is created in a
file. This expression resolves to an integer that Vim uses as the indentation of the new
line.

In addition, the option indentkeys can define useful keywords in the same way that
cinkeys keywords define lines after which indentation is reevaluated.

The bad news is that it is a nontrivial project to write customized indentation rules from
scratch for any language. The good news is it’s likely that the work is already done.
Look in the $VIMRUNTIME/indent directory to see whether your favorite language is rep-
resented. A quick peek today reveals more than 70 indent files.

The most common programming languages are represented, including ada, awk, doc-
book (the indent file is named docbk), eiffel, fortran, html, java, lisp, pascal, perl, php,
python, ruby, scheme, sh, sql, and zsh. There is even an indent file defined for xinetd!

You can tell Vim to automatically detect your file type and load the indent file by putting
the command filetype indent on in your .vimrc file. Now Vim will try to detect what
file type you are editing and load a corresponding indent definition file for you. If the
indent rules do not fill your needs—for example, if they indent in some unfamiliar or
unwanted fashion—turn the definitions off with the command :filetype indent off.

We encourage power users to explore and learn from the indent definition files that
come with Vim. And if you develop new definition files or improvements to existing
ones, we encourage you to submit them to vim.org for possible addition to the Vim
package.

258 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


A Final Word on Indentation
Before ending our discussion, it’s worth noting a couple of points about working with
automatic indenting:

When automatic indenting isn’t
Any time you act on a line in an edit session with automatic indenting and you
change that line’s indentation manually, Vim flags that line and will no longer try
to automatically define its indentation.

Copy and paste
When you paste text into your file where automatic indenting is turned on, Vim
considers this regular input and applies all automatic indentation rules. In most
cases, this is probably not what you intend. Any indentation in pasted text is tacked
on to applied indentation rules. Typically the result is text that progressively skews
to the right side of the screen with large indentation and no corresponding retreat
to the left side.

To avoid this awkward situation and to paste text intact without side effects, set Vim’s
paste option before adding the imported text. paste comprehensively reconfigures all
of Vim’s automatic features to faithfully incorporate pasted text. To return to automatic
mode, simply reset the paste option with the command :set nopaste.

Keyword and Dictionary Word Completion
Vim offers a comprehensive suite of insertion-completion capabilities. From program-
ming language-specific keywords to filenames, dictionary words, and even entire lines,
Vim knows how to offer possible completions to partially entered text. Not only that,
but Vim abstracts the semantic of dictionary-based completion to include completions
based on synonyms for the completed word from a thesaurus!

In this section we look at the different completion methods, their syntaxes, and de-
scriptions of how they work with examples. The methods of completion include:

• Whole line

• Current file keywords

• dictionary option keywords

• thesaurus option keywords

• Current and included file keywords

• Tags (as in ctags)

• Filenames

• Macros

• Vim command line

• User-defined

Keyword and Dictionary Word Completion | 259

www.it-ebooks.info

http://www.it-ebooks.info/


• Omni

• Spelling suggestions

• complete option keywords

Except for complete keywords, all completion commands start with CTRL-X . The sec-
ond key specifically defines the type of completion Vim attempts. For example, the
command to autocomplete filenames is CTRL-X  CTRL-F . (Not all the commands are
so mnemonic, unfortunately.) Vim uses unmapped (default) keys, which allows you to
shorten most of these commands to just the second keystroke by mapping the com-
mands appropriately. (For instance, you can map CTRL-X  CTRL-N  to just CTRL-N .)

All completion methods have virtually identical behavior: they cycle through a list of
candidate completions as you retype the second keystroke. Thus, if you choose filename
autocompletion through CTRL-X  CTRL-F and you don’t get the right word on the
first try, you can repeatedly press CTRL-F  to see the other options. Additionally, if you
press CTRL-N  (for “next”), you move forward through the possibilities, whereas
CTRL-P  (for “previous”) moves backward.

Let’s look at some of these autocompletion methods with examples and consider how
they might be useful.

Insertion Completion Commands
These methods range in function from simply looking for words in your current file to
spanning the range of function, variable, macro, and other names throughout an entire
suite of code. The final method combines features of the others for a nice compromise
between power and sophistication.

You may want to find your favorite completion method and map it to
a single easy-to-use key. I map mine to the Tab key:

:imap Tab <C-P>

This sacrifices my ability to insert tabs easily, but it allows me to use the
same key I use (available by default) in command-line environments
such as DOS and shell (xterm, konsole, etc.) to complete partially typed
information. (Remember, you can always insert a tab by quoting it with
CTRL-V .) Mapping to the Tab key also corresponds to the normal
completion key in Vim’s command-line mode.

Completing whole lines

This is invoked through CTRL-X  CTRL-L . The method looks backward in the current
file for a line matching the characters you’ve typed. We’ll try an example to give you a
sense of how completion works.

260 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


Consider a file that contains terminal, or console, definitions that characterize the fea-
tures of terminals and how to manipulate them. Say your screen resembles Figure 14-16.

Note the highlighted line containing “This terminal widely used in our company...”.
You need this line in many places as you mark terminals as “widely used” for your
company. Simply type enough of the line to make it unique, or close to unique, and
then type CTRL-X  CTRL-L . Thus, Figure 14-17 contains the partial input line:

# Thi

CTRL-X  CTRL-L  causes Vim to show a set of possible completions for the line, based
on lines previously entered in the file. The list of completions is shown in Figure 14-18.

It is hard to see in grayscale, but the screen offers a colored pop-up window containing
multiple occurrences of lines matching the beginning of our partial line. Also displayed,
but not visible in the screenshot, is information describing where the match is found.

Figure 14-16. Example of completion by line

Figure 14-17. Partially typed line waiting for completion

Figure 14-18. After typing CTRL-X CTRL-L

Keyword and Dictionary Word Completion | 261

www.it-ebooks.info

http://www.it-ebooks.info/


This method uses the complete option to define the scope for searching for matches.
Scope is discussed in detail in the last method of this section.

The pop up* list highlights selections as you move forward ( CTRL-N ) or backward
( CTRL-P ) through the list. Press ENTER  to select your match. If you do not want any
of the choices in the list, type CTRL-E  to halt the match method without substituting
any text. Your cursor returns to its original position on the same partial input.

Figure 14-19 shows the results after we select an option from the list.

Completion by keyword in file

CTRL-X  CTRL-N  searches forward through the current file for keywords matching
the keyword in front of the cursor. Once you enter those keystrokes, you can use CTRL-
N  and CTRL-P  to search forward or backward, respectively. Press ENTER  to select
a match.

Note that “keyword” is loosely defined. While it may be keywords pro-
grammers are familiar with, it can really match any word in the file.
Words are defined as a contiguous set of characters in the iskeyword
option. The iskeyword defaults are pretty sane, but you can redefine the
option if you want to include or leave out some punctuation. Characters
in iskeyword can be specified either directly (such as a–z) or through
ASCII code (such as using 97-122 to represent a–z).

For instance, the defaults allow an underscore as part of a word, but
consider a period or hyphen to be a delimiter. This works fine for C-like
languages, but may not be the best choice for other environments.

Completion by dictionary

CTRL-X  CTRL-K  searches forward through the files defined by the dictionary option
for keywords matching the keyword in front of the cursor.

* The pop up is in gvim; Vim behaves slightly differently.

Figure 14-19. After typing CTRL-X CTRL-L and selecting our matching line

262 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


The default setup leaves the dictionary option undefined. There are common places
to find dictionary files, and you can define your own. The most common dictionary
files are:

• /usr/dict/words (Cygwin on XP)

• /usr/share/dict/words (FreeBSD)

• $HOME/.mydict (personal list of dictionary words)

Notice that for Windows XP, the dictionary word file is provided by Cygwin (http://
www.cygwin.com/), a free software emulation suite of Unix utilities. Although instal-
lation of Cygwin is beyond the scope of this discussion, it is worth noting that you can
selectively install small portions of it, and you may find it worthwhile to install the piece
that contains the word dictionary.

Completion by thesaurus

CTRL-X  CTRL-T  searches forward through the files defined by the thesaurus option
for keywords that match the keyword in front of the cursor.

This method offers an interesting twist. When Vim finds a match, if the line in the
thesaurus file contains more than one word, Vim includes all the words in the list of
completion candidates.

Ostensibly (and implied by the option’s name), this method provides synonyms but
allows you to define your own standard. Consider the example file containing these
lines:

fun enjoyable desirable
funny hilarious lol rotfl lmao
retrieve getchar getcwd getdirentries getenv getgrent ...

The first two lines are typical English-language synonyms (matching “fun” and “fun-
ny,” respectively), while the third line might be useful for C programmers who regularly
insert function names that begin with get. The synonym we use for these functions is
“retrieve.”

In real life, we’d separate the English-language thesaurus from the C-language one,
because Vim can search multiple thesauruses.

In input mode, type the word fun, then CTRL-X  CTRL-T . Figure 14-20 shows the
resulting pop up in gvim.

Notice the following:

• Vim matches any word it can find in a thesaurus entry, not just the first word of
each line in the thesaurus file.

• Vim includes candidate words from all lines in the thesaurus that have a match
with the keyword in front of the cursor. Thus, in this case, it finds the matches for
both “fun” and “funny.”

Keyword and Dictionary Word Completion | 263

www.it-ebooks.info

http://www.it-ebooks.info/


Another interesting and perhaps unanticipated behavior of thesaurus is
that the match can be on words on a line in the thesaurus file other
than the first word. For instance, in the line from the previous example
file:

funny hilarious lol rotfl lmao

If you type hilar and complete it, Vim will include in the list all words
from hilarious on that line, i.e., “hilarious,” “lol,” “rotfl,” and “lmao.”
Funny!

Did you notice the extra information in the list of candidates for completion? You can
get information about where Vim found the match in the pop-up menu by adding the
value preview to the completeopt option.

Now consider an example, using the same file as before, in which you type the partial
word retrie. This matches “retrieve,” a synonym we like as a mnemonic for “getting”
stuff, and we include all “get” function names as synonyms. Now, CTRL-X  CTRL-
T  gives us the pop-up menu (in gvim) of all of our functions as choices for completion.
See Figure 14-21.

As with other completion methods, press ENTER  to select the match.

Completion by keyword in current file and included files

CTRL-X  CTRL-I  searches forward through the current file and included files for key-
words matching the keyword in front of the cursor. This method differs from the
“search current file” method ( CTRL-X  CTRL-P ) in that Vim inspects the current file
for include file references and searches those files, too.

Vim uses the value in include to detect lines referencing include files. The default is a
pattern telling Vim to find lines matching the standard C construct:

# include <somefile.h>

Figure 14-20. Thesaurus completion of “fun”

264 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


In this case, Vim would find matches in the file somefile.h in the standard include file
directories on the system. Vim also uses the path option as a list of directories to search
for the included files.

Completion by tag

CTRL-X  CTRL-]  searches forward through the current file and included files for key-
words matching tags. (See the earlier section “Using Tags” on page 123 for a discussion
of tags.)

Completion by filename

CTRL-X  CTRL-F  searches for filenames matching the keyword in front of the cursor.
Note that this causes Vim to complete the keyword with the name of the file, not with
words found in files.

As of Vim 7.1, Vim searches only in the current directory for files with
possible filename matches. This is in contrast to many Vim features that
use the path option to look for files. The built-in Vim documentation
hints that this behavior is temporary, by pointing out that path isn’t used
“yet.”

Figure 14-21. Thesaurus completion of string “retrie”

Keyword and Dictionary Word Completion | 265

www.it-ebooks.info

http://www.it-ebooks.info/


Completion by macro and definition names

CTRL-X  CTRL-D  searches forward through the current file and included files for
macro names and definitions defined by the #define directive. This method inspects
the current file for include file references and searches those files, too.

Completion method with Vim commands

This method, invoked through CTRL-X  CTRL-V , is meant for use on the Vim com-
mand line and tries to guess the best completions for words. This context is provided
to assist users developing Vim scripts.

Completion by user functions

This method, invoked through CTRL-X  CTRL-U , lets you define the completion
method with your own function. Vim uses the function pointed to by the option
completefunc to make the completion. Refer to Chapter 12 for discussions about script-
ing and writing Vim functions.

Completion by omni function

This method, invoked through CTRL-X  CTRL-O , uses user-defined functions much
like the previous user function method. The significant difference is that this method
expects the functions to be file type-specific, and hence, determined and loaded as a
file is loaded. Omni completion files are already available for C, CSS, HTML, Java-
Script, PHP, Python, Ruby, SQL, and XML. The built-in Vim documentation mentions
that more scripts will be available soon for Vim 7.1, including an omni function file for
C++. We encourage you to experiment with them.

Completion for spelling correction

This method is invoked through CTRL-X  CTRL-S . The word in front of the cursor is
used as the base word for which Vim offers candidates for completion. If the word
appears to be badly spelled, Vim offers suggested “more correct” spellings.

Completion with the complete option

This is the most generic option, invoked through CTRL-N , and lets you combine all
the other searches into one. For many users, this may be the most satisfactory because
it requires little understanding of the nuances of the more specific methods.

Define where and how this completion acts by setting the comma-separated list of
available sources in the complete option. Each available source is denoted by a single
character. The choices include:

. (period)
Search the current buffer

266 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


w
Search buffers in other windows (within the screen containing your Vim session)

b
Search other loaded buffers in the buffer list (which might not be visible in any Vim
windows)

u
Search the unloaded buffers in the buffer list

U
Search the buffers not in the buffer list

k
Search the dictionary files (listed in the dictionary option)

kspell
Use the current spellchecking scheme (this is the only option that is not a single
character)

s
Search the thesaurus files (listed in the thesaurus option)

i
Search the current and included files

d
Search the current and included files for defined macros

t, ]
Search for tag completion

Some Final Comments on Vim Autocompletion
We’ve covered a lot of material related to autocompletion, but there’s lots more. The
autocompletion methods yield great returns for the time you invest in mastering their
use. If you edit a lot, and if there’s any notion or context of text to be completed, find
the method best suited to that and learn it.

One final tip. Combinations with two keystrokes (more if you are a typical Unix user
and count key combinations as “more than one”) can be error-prone, especially given
that they are combinations with the CTRL  key. If you think you’d use autocompletion
heavily, consider mapping your favorite autocompletion to just one keystroke or key
combination. Large numbers of autocompletion commands abbreviated to half the
length offer that much more efficiency.

The following example shows you why we find this customization so valuable. I map
the Tab key to generic keyword matching, as mentioned earlier. While editing this book
using DocBook XML tags, I have (using a conservative grep of the files) typed “em-
phasis” more than 1,200 times! Using keyword completion, I know the partial “emph”
always matches to one choice, the “emphasis” tag I want. Thus, for each occurence of

Keyword and Dictionary Word Completion | 267

www.it-ebooks.info

http://www.it-ebooks.info/


this word, I save at least three keystrokes (assuming perfect typing for the three initial
letters), giving me a total savings of at least 3,600 keystrokes!

Here’s another way to measure the efficiency of this method: I already know I type
about four characters per second, thus gaining a savings in typing for one keyword
alone of 3,600 divided by 4, or 15 minutes time saved. For the same DocBook files, I
complete another 20 to 30 keywords in the same fashion. The savings in time accrue
quickly!

Tag Stacking
Tag stacking is described earlier in the section “Tag Stacks” on page 131. Besides mov-
ing back and forth among the tags you search for, you can choose among multiple
matching tags. You can also do tag selection and window splitting with one command.
The Vim ex mode commands for working with tags are provided in Table 14-1.

Table 14-1. Vim tag commands

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags file. The ! forces
Vim to switch to the new file if the current buffer has been modified but
not saved. The file may or may not be written out, depending on the setting
of the autowrite option.

[count]ta[g][!] Jump to the count’th newer entry in the tag stack.

[count]po[p][!] Pop a cursor position off the stack, restoring the cursor to its previous
position. If supplied, go to the count’th older entry.

tags Display the contents of the tag stack.

ts[elect][!] [tagstring] List the tags that match tagstring, using the information in the tags file(s).
If no tagstring is given, the last tag name from the tag stack is used.

sts[elect][!] [tagstring] Like :tselect, but splits the window for the selected tag.

[count]tn[ext][!] Jump to the count’th next matching tag (default is 1).

[count]tp[revious][!] Jump to the count’th previous matching tag (default is 1).

[count]tN[ext][!]

[count]tr[ewind][!] Jump to the first matching tag. With count, jump to the count’th matching
tag.

tl[ast][!] Jump to the last matching tag.

Normally, Vim shows you which matching tag out of how many it has jumped to. For
example:

tag 1 of >3

It uses a greater-than sign (>) to indicate that it has not yet tried all the matches. You
can use :tnext or :tlast to try more matches. If this message is not displayed because
of some other message, use :0tn to see it.

268 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


Here is the output of the :tags command, with the current location marked with a
greater-than sign (>):

   # TO tag      FROM line in file
   1  1 main             1  harddisk2:text/vim/test
 > 2  2 FuncA           58  -current-
   3  1 FuncC          357  harddisk2:text/vim/src/amiga.c

The :tselect command lets you pick from more than one matching tag. The “priority”
(pri field) indicates the quality of the match (global versus static, exact case versus case-
independent, etc.); this is described more fully in the vim documentation.

 nr pri kind tag                file ~
  1 F   f    mch_delay          os_amiga.c
                mch_delay(msec, ignoreinput)
> 2 F   f    mch_delay          os_msdos.c
                mch_delay(msec, ignoreinput)
  3 F   f    mch_delay          os_unix.c
                mch_delay(msec, ignoreinput)
Enter nr of choice (<CR> to abort):

The :tag and :tselect commands can be given an argument that starts with /. In that
case, the command uses it as a regular expression, and Vim will find all the tags that
match the given regular expression. For example, :tag /normal will find the macro
NORMAL, the function normal_cmd, and so on. Use :tselect /normal and enter the number
of the tag you want.

The vi command mode commands are described in Table 14-2. Besides using the key-
board, as in the other editors, you can also use the mouse if mouse support is enabled
in your version of Vim.

Table 14-2. Vim command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file, and
move to that location. The current location is automatically pushed onto
the tag stack.

g <LeftMouse>

CTRL-<LeftMouse>

^T Return to the previous location in the tag stack, i.e., pop off one element.
A preceding count specifies how many elements to pop off the stack.

The Vim options that affect tag searching are described in Table 14-3.

Table 14-3. Vim options for tag management

Option Function

taglength, tl Controls the number of significant characters in a tag that is to be looked
up. The default value of zero indicates that all characters are significant.

tags The value is a list of filenames in which to look for tags. As a special case,
if a filename starts with ./, the dot is replaced with the directory part of
the current file’s pathname, making it possible to use tags files in a dif-
ferent directory. The default value is "./tags,tags".

Tag Stacking | 269

www.it-ebooks.info

http://www.it-ebooks.info/


Option Function

tagrelative When set to true (the default) and using a tags file in another directory,
filenames in that tags file are considered to be relative to the directory
where the tags file is.

Vim can use Emacs-style etags files, but this is only for backward compatibility; the
format is not documented in the Vim documentation, nor is the use of etags files
encouraged.

Finally, Vim also looks up the entire word containing the cursor, not just the part of
the word from the cursor location forward.

Syntax Highlighting
One of Vim’s strongest enhancements to vi is its syntax highlighting. Vim’s syntax
formatting relies heavily on the use of color, but it also degrades gracefully on screens
that do not support color. In this section we discuss three topics: getting started, cus-
tomizing, and rolling your own. Syntax highlighting for Vim contains features that go
beyond the scope of this book, so we focus on providing enough information to get
you familiar with it and enable you to extend it to fit your needs.

Because the impact of Vim’s syntax highlighting is most dramatic in
color, and this book isn’t (in color), we strongly encourage you to try
syntax highlighting to fully appreciate the power of color in defining
context. I have never met a user who tried it and then did not continue
to always use it.

Getting Started
Displaying a file’s syntax highlighting is simple. Just issue the command:

:syntax enable

If all is well, and if you edit a file with a formal syntax, such as a programming language,
you should see text in various colors, all determined by context and syntax. If nothing
changed, try turning syntax on:

:syntax on

Enabling syntax should be enough by itself, but we have encountered situations where
the additional command was required to turn on the syntax highlighting.

If you still see no syntax highlights, Vim may not know what your file type is and thus
not understand which syntax is appropriate. There are a number of reasons this
happens.

270 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


For example, if you create a new file and don’t use a recognized suffix, or no suffix at
all, Vim cannot determine the file type because the file is new and therefore empty. For
instance, I write shell scripts without any .sh suffix. Each new shell script begins its
editing life without syntax highlighting. Fortunately, once the file contains code, Vim
knows how to figure out the file type and syntax highlighting works as expected.

It’s also possible (though not likely) that Vim doesn’t recognize your file type. This is
very rare, and usually you just need to specify a file type explicitly, because someone
has already written a syntax file for the language. Unfortunately, creating one from
scratch is a complex undertaking, although we give you some tips later in this chapter.

You can force Vim to use the syntax highlighting of your choice by setting the syntax
manually from the command line. When starting a new shell script, for instance, I
always define the syntax with:

:set syntax=sh

The section “Dynamic File Type Configuration Through Scripting” on page 205 shows
a clever and rather roundabout way to avoid this step.

When you enable syntax, Vim sets up syntax highlighting by going through a checklist.
Without getting mired in too many technical details, we’ll just say that Vim ultimately
determines your file type, finds the appropriate syntax definition file, and loads it for
you. The standard location for syntax files is the $VIMRUNTIME/syntax directory.

To get a sense of the comprehensive coverage of syntax definitions, the Vim syntax file
directory contains almost 500 syntax files. Available syntaxes span the gamut from
languages (C, Java, HTML) to content (calendar) to well-known configuration files
(fstab, xinetd, crontab). If Vim doesn’t recognize your file type, try looking in the
$VIMRUNTIME/syntax directory for a syntax file that closely matches yours.

Customization
Once you start using syntax highlighting, you may find that some of the colors do not
work for you. They may be difficult to see or just not suit your taste. Vim has a few
ways to customize and tune colors.

Here are some things to try before taking more drastic measures (e.g., writing your own
syntax, as described in the next section) to make syntax highlighting work for you.

Two of the most common and dramatic symptoms of syntax highlighting gone amok
are:

• Bad contrast, with colors too similar and hard to see distinctly as different from
each other

• Too many, or too varied, colors, which creates a harsh look to the text

Syntax Highlighting | 271

www.it-ebooks.info

http://www.it-ebooks.info/


Although these are subjective deficiencies, it’s nice that Vim lets you make corrections.
Two commands, colorscheme and highlight, and one option, background, can probably
bring the colors to a satisfactory balance for most users.

There are a few other commands and options with which you can customize your
syntax highlighting. After a brief introduction to syntax groups, we will talk about these
commands and options in the following sections, with an emphasis on the three just
mentioned.

Syntax groups

Vim classifies different types of text into groups. These groups each receive color and
highlight definitions. Additionally, Vim allows groups of groups. You can address def-
initions at different levels. If you assign a definition to a group containing subgroups,
unless otherwise defined, each subgroup inherits the parent group’s definitions.

Some high-level groups for syntax highlighting include:

Comment
Comments specific to the programming language, e.g.:

 // I am both a C++ and a JavaScript comment

Constant
Any constant, e.g. TRUE

Identifier
Variable and function names

Type
Declarations, such as int and struct in C

Special
Special characters, such as delimiters

Taking the “special” group from the previous list, we can look at an example of
subgroups:

• SpecialChar

• Tag

• Delimiter

• SpecialComment

• Debug

With a basic understanding of syntax highlighting, groups, and subgroups, we now
know enough to modify syntax highlighting to suit our tastes.

272 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


The colorscheme command

This command changes colors for different syntax highlights such as comments, key-
words, or strings by redefining these syntax groups. Vim ships with the following color
scheme choices:

• blue

• darkblue

• default

• delek

• desert

• elflord

• evening

• koehler

• morning

• murphy

• pablo

• peachpuff

• ron

• shine

• slate

• torte

• zellner

These files are in the directory $VIMRUNTIME/colors. You can activate any one of them
with:

:colorscheme schemeName

In non-GUI Vim, you can quickly cycle through the different schemes
this way: type the partial command :color, press the Tab key to start
command completion, press the Space bar, then repeatedly press the
Tab key to cycle through the different choices.

In gvim, the choice is even easier. Click on the Edit menu, move the
mouse over the Colorscheme submenu, and select the “tear off” (the
line with scissors) menu. Now you can look at all the choices by clicking
each button.

Syntax Highlighting | 273

www.it-ebooks.info

http://www.it-ebooks.info/


Setting the background option

When Vim sets colors, it first tries to determine what kind of background color your
screen has. Vim has just two categories for background: dark or light. Based on Vim’s
determination, it sets colors differently for each, with the end result hopefully being a
set of colors that works well with that background (one with good contrast and color
compatibility). Although Vim does try very hard, a correct assessment is tricky, and an
assignment to dark or light is subjective. Sometimes the contrasts render the session
uncomfortable to view, and sometimes they are unreadable.

So, if the colors don’t look good, try explicitly choosing a background setting. Make sure
first to identify the setting:

:set background?

so that you know that you are changing the setting. Then, issue a command such as:

:set background=dark

Use the background option in tandem with the colorscheme command to fine-tune your
screen colors. These two together can usually produce a satisfactory color palette that
is comfortable to view.

The highlight command

Vim’s highlight command lets you manipulate different groups and control how they
are highlighted in your edit session. This command is powerful. You can inspect settings
for various groups either as a list or by requesting specific group highlight information.
For example:

:highlight comment

in my edit session returns Figure 14-22.

The output shows how comments in this file will appear. The xxx is dark gray on this
page, but on the screen it’s blue. The term=bold output means that on a terminal inca-
pable of color, comments will be shown in bold. ctermfg=4 means that on a color ter-
minal, such as an xterm on a color monitor, the foreground color for comments will be
the matching DOS color dark blue. Finally, guifg=Blue means the GUI interface will
display comments with the foreground color blue.

Figure 14-22. Highlight for comments

274 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


The DOS color scheme is a more restricted set of colors than modern
GUI sets. For the DOS colors, there are eight: black, red, green, yel
low, blue, magenta, cyan, and white. Each of these can be set for text
foreground or background and optionally can be defined as “bright,” a
brighter color on the screen. Vim uses analogous mappings for defining
text colors in non-GUI windows, e.g., xterms.

GUI windows offer virtually unlimited color definitions. Vim lets you
define some colors with common names such as Blue, but you can also
define these colors with red, green, and blue values. The format is
#rrggbb where the # is literal, and rr, gg, and bb are hex numbers rep-
resenting the level of each color. For example, red could be defined with
#ff0000.

Use the highlight command to change settings for groups whose colors you don’t like.
For example, we can find that identifiers in this file are dark cyan for our GUI interface,
as shown in the output in Figure 14-23.

:highlight identifier

We can redefine the color for identifiers with the command:

:highlight identifiers guifg=red

Now all identifiers on the screen are (a rather ugly) red. This kind of customization is
fairly inflexible: it applies to all file types and does not adapt to different backgrounds
or color schemes.

To see how many highlight definitions exist and what their values are, again use high
light:

:highlight

Figure 14-24 shows a small sample of the results from the highlight command.

Note how some lines contain full definitions (listing term, ctermfg, and so on), whereas
others receive their attributes from parent groups (e.g., String links back to Constant).

Overriding syntax files

In the previous section, we learned how to define syntax group attributes for all in-
stances of a group. Suppose you want to change a group for only one or a few syntax
definitions. Vim lets you do this with the after directory. This is a directory in which

Figure 14-23. Highlight for identifiers

Syntax Highlighting | 275

www.it-ebooks.info

http://www.it-ebooks.info/


you can create any number of after syntax files that Vim will execute after the normal
syntax file.

To do this, simply include highlight commands (or any processing commands—the
notion of “after” processing is generic) in the specific file in a directory named after
that is included in the runtimepath option. Now, when Vim sets up syntax highlighting
rules for your file type, it will also execute your custom commands in the after file.

For example, let’s apply a customization to XML files, which use the xml syntax. This
means Vim loaded syntax definitions from a file in the syntax directory named
xml.vim. As in the previous example, we want to define identifiers always to be red. So
we create our own file named xml.vim in a directory named ~/.vim/after/syntax. In
our xml.vim file we put the line:

highlight identifier ctermfg=red guifg=red

Before this customization works, we must ensure that ~/.vim/after/syntax is in the
runtimepath path:

:set runtimepath+=~/.vim/after/syntax           In our .vimrc

To make the change permanent, of course, the line should go in our .vimrc file.

Now, whenever Vim loads syntax definitions for xml, it will override the definitions for
identifier with our own customization.

Rolling Your Own
With the building blocks of the previous sections, we now have enough knowledge to
write our own syntax files, simple as they might be. There are still many facets to learn
before we can fully develop a syntax file.

Figure 14-24. Partial results from the highlight command

276 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


We will incrementally build our own syntax file. Because syntax definitions can be
extremely complex, let’s consider something simple enough to be easily grasped, but
complex enough to show its potential power.

Consider an excerpt from a generated Latin file, loremipsum.latin:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin eget
tellus. Suspendisse ac magna at elit pulvinar aliquam. Pellentesque
iaculis augue sit amet massa. Aliquam erat volutpat. Donec et dui at
massa aliquet molestie. Ut vel augue id tellus hendrerit porta. Quisque
condimentum tempor arcu. Aenean pretium suscipit felis. Curabitur semper
eleifend lectus. Praesent vitae sapien. Ut ornare tempus mauris. Quisque
ornare sapien congue tortor.

In dui. Nam adipiscing ligula at lorem. Vestibulum gravida ipsum iaculis
justo. Integer a ipsum ac est cursus gravida. Etiam eu turpis. Nam laoreet
ligula mollis diam. In aliquam semper nisi. Nunc tristique tellus eu
erat. Ut purus. Nulla venenatis pede ac erat.

...

Create a new syntax by creating a new file of that syntax name, in this case latin. Its
corresponding Vim file is latin.vim, which you can create in your personal Vim runtime
directory, $HOME/.vim. Then, start your syntax definition simply by creating some key-
words with the syntax keyword command. Choosing lorem, dolor, nulla, and lectus as
our keywords, you can inaugurate the syntax file with the line:

syntax keyword identifier lorem dolor nulla lectus

There still isn’t any syntax highlighting when you edit loremipsum.latin. More work
needs to be done before highlighting is automatic. But for the time being, activate the
syntax with the command:

:set syntax=latin

Because the $HOME/.vim directory is one of the directories in the runtimepath option,
the text should now look something like Figure 14-25.

It is a little difficult to see, but the keywords you defined that are visible in this snapshot
are dark gray instead of black, indicating a different color from the rest of the text. (The
actual colors on the screen were black text with blue keywords.)

Figure 14-25. Latin file with keywords defined

Syntax Highlighting | 277

www.it-ebooks.info

http://www.it-ebooks.info/


You may have noticed that the first occurence of Lorem isn’t highlighted. By default,
syntax keywords are case-sensitive. Add the line at the top of our syntax file:

:syntax case ignore

and you should now see Lorem included as a highlighted keyword.

Before we try this again, let’s make it all work automatically. After Vim tries to detect
any file type, it optionally checks for other definitions, or even overriding definitions
(which are not recommended), in a directory named ftdetect in your runtimepath.
Therefore, create that directory under $HOME/.vim and create a file in it named
latin.vim containing a single line:

au BufRead,BufNewFile *.latin set filetype=latin

This line tells Vim that any files with the suffix .latin are latin files, and therefore that
Vim should execute the syntax file in $HOME/.vim/syntax/latin.vim when displaying
them.

Now when you edit loremipsum.latin, you see Figure 14-26.

First, notice that the syntax was active right away, as Vim correctly detected your new
syntax file type, latin. And keywords now match without any sensitivity to case.

For some more interesting extensions, define a match and assign it to group Comment.
The match method uses a regular expression to define what is highlighted. For example,
we will define all words beginning with s and ending with t to be Comment syntax (re-
member, this is just an example!). Our regular expression is: \<s[^\t ]*t\> (trust us).
We also will define a region and highlight it as a Number. Regions are defined with a
start and end regular expression.

Our region begins with Suspendisse and ends with sapien\.. To add even more of a
twist, we decide that the keyword lectus is contained within our region. Our
latin.vim syntax file now looks like:

syntax case ignore
syntax keyword identifier lorem dolor nulla lectus
syntax keyword identifier lectus  contained

Figure 14-26. Latin file with keywords defined, ignoring case

278 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


syntax match comment /\<s[^\t ]*t\>/
syntax region number start=/Suspendisse/ end=/sapien\./ contains=identifier

Now, when we edit loremipsum.latin, we see Figure 14-27.

There are several things to notice, which you can see much more easily if you run the
example and view the results in color:

• The new match highlights appear. On the first line, sit is highlighted in blue be-
cause it satisfies the regular expression for the match.

• The new region highlights appear. The entire section of the paragraph beginning
with Suspendisse through sapien. is highlighted in purple (ick).

• The keywords are still highlighted as before.

• Within the highlighted region, the keyword lectus is still highlighted in green be-
cause we defined group identifier as contained and defined our region as contains
identifier.

This example only begins to tap the rich powers of syntax highlighting. Although this
particular example is somewhat useless, we hope that it demonstrates enough to con-
vince you of its power and encourages you to experiment and create your own syntax
definitions.

Compiling and Checking Errors with Vim
Vim isn’t an Integrated Development Environment (IDE), but it tries to make life a little
easier for programmers by incorporating compilation into the edit session and provid-
ing a quick and easy way to find and correct errors.

Additionally, Vim offers some convenience functions to track and navigate locations in
your files. We discuss a simple example: the edit-compile-edit cycle using Vim’s built-
in features and some of its related commands and options, as well as the convenience
functions. All of these depend on the same Vim Quickfix List window.

As a simple starting point, Vim lets you compile files using make each time you change
one. Vim uses default behavior to manage the results of your build so that you can easily

Figure 14-27. New latin syntax highlighting

Compiling and Checking Errors with Vim | 279

www.it-ebooks.info

http://www.it-ebooks.info/


alternate between editing and compilation. Compilation errors appear in Vim’s special
Quickfix List window, where you can inspect, jump to, and correct errors.

For this topic we use a little C program that generates Fibonacci numbers. In its correct
and compilable form, the code is:

# include <stdio.h>

int main(int argc, char *argv[])
  {
  /*
   * arg 1: starting value
   * arg 2: second value
   * arg 3: number of entries to print
   *
  */

  if (argc - 1 != 3)
    {
    printf ("Three command line args: (you used %d)\n", argc);
    printf ("usage: value 1, value 2, number of entries\n");
    return (1);
    }

  /* count = how many to print */
  int count = atoi(argv[3]);

  /* index = which to print */
  long int index;

  /* first and second passed in on command line */
  long int first, second;

  /* these get calculated */
  long int current, nMinusOne, nMinusTwo;

  first  = atoi(argv[1]);
  second = atoi(argv[2]);
  printf("%d fibonacci numbers with starting values: %d, %d\n", count, first, 
      second);
  printf("=======================================\n");

  /* print the first 2 from the starter values */
  printf("%d %04d\n", 1, first);
  printf("%d %04d  ratio (golden?) %.3f\n", 2, second, (double) second/first);

  nMinusTwo = first;
  nMinusOne = second;

  for (index=1; index<=count; index++)
    {
    current = nMinusTwo + nMinusOne;
    printf("%d %04d  ratio (golden?) %.3f\n",

280 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


            index,
            current,
            (double) current/nMinusOne);
    nMinusTwo =  nMinusOne;
    nMinusOne = current;
    }
  }

From Vim, compile this program (assuming a filename of fibonacci.c) with the
command:

:make fibonacci

By default, Vim passes the make command through to the external shell and captures
the results in the special Quickfix List window. After compiling the previous code, the
screen with the Quickfix List window looks something like Figure 14-28.

Next, we change enough lines in our program to introduce a healthy number of errors.

Change:

  long int current, nMinusOne, nMinusTwo;

to the invalid declaration:

  longish int current, nMinusOne, nMinusTwo;

Change:

  nMinusTwo = first;
  nMinusOne = second;

to misspelled variables xfirst and xsecond:

  nMinusTwo = xfirst;
  nMinusOne = xsecond;

Figure 14-28. Quickfix List window after a clean compile

Compiling and Checking Errors with Vim | 281

www.it-ebooks.info

http://www.it-ebooks.info/


Change:

  printf("%d %04d  ratio (golden?) %.3f\n", 2, second, (float) second/first);

to this, with missing commas:

  printf("%d %04d  ratio (golden?) %.3f\n", 2 second (float) second/first);

Now recompile the program. Figure 14-29 shows what the Quickfix List window now
contains.

Line 1 of the Quickfix List window shows the compile command executed. If there
had been no errors, this would be the only line in the window. But because there are
errors, line 3 begins the list of errors and their context.

Vim lists all errors in the Quickfix List window and lets you access the code, where
errors are indicated in several ways. Vim starts with the convenience behavior by high-
lighting the first error in the Quickfix List window. It then repositions the source file
(scrolling if necessary) and places the cursor at the beginning of the source code line
corresponding to the error.

As you fix errors, you can navigate to the next error in one of a couple ways: enter the
command :cnext, or position the cursor over the error line in the Quickfix List window
and press ENTER . Again, Vim scrolls the source file if necessary, and positions the
cursor at the beginning of the offending source code line.

After you’ve made changes and are satisfied that you’ve corrected your errors, you’re
ready to begin the compile-edit cycle again using the same technique. If you have a
standard developer’s environment (which is almost always true for Unix/Linux ma-
chines), Vim’s default behaviors will handle edit-compile-edit as described without any
tweaking.

If Vim’s defaults don’t find a proper compile program, it has options you can use to
define where utilities are located, to let you do your work. The details about
programming environments and compilers are outside the scope of this discussion, but

Figure 14-29. Quickfix List window after a compilation with errors

282 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


we present these Vim options as a starting point in case you need to play with your
environment:

makeprg
An option containing the name of the development environment’s make or
compile program.

:cnext, :cprevious
Commands that move the cursor to next and previous error locations, as defined
in the Quickfix List window, respectively.

:colder, :cnewer
Vim remembers the last 10 lists of errors. These commands load the next older or
next newer list of errors in the Quickfix List window. Each command takes an
optional integer n to load the nth older or newer error list.

errorformat
An option defining a format that Vim matches to find errors returned from a com-
pile. Vim’s built-in documentation gives much more detailed information on how
this is defined, but the default almost always works. If you need to tune the option,
view its details with:

:help errorformat

More Uses for the Quickfix List Window
Vim also lets you build your own list of locations within files, specifying the locations
through a grep-like syntax. The Quickfix List window returns the results you asked
for in a format closely resembling the lines returned from the compilation process de-
scribed earlier.

This feature is useful for such tasks as refactoring. As an example, we composed this
manuscript in DocBook, a form similar to XML. At some point in the composition
process we switched the notation for any occurence of “vim” from <emphasis> to
<literal>. So, each occurence like:

<emphasis>vim</emphasis>

needed to be changed to:

<literal>vim</literal>

After executing this command:

:vimgrep /<emphasis>vim<\/emphasis>/ *.xml

the Quickfix List window contained the information shown in Figure 14-30.

Then it was a simple matter to navigate through all occurrences and quickly change to
the new values.

Compiling and Checking Errors with Vim | 283

www.it-ebooks.info

http://www.it-ebooks.info/


This example may seem to solve a problem more easily solved with this
simple command:

:%s/<emphasis>vim<\/emphasis>/<literal>vim<\/literal>/g

But remember, vimgrep is more general and operates against multiple
files. This is an example of what vimgrep does, not a definitive way to
perform this task. In Vim, there are usually many ways to complete a
task.

Some Final Thoughts on Vim for Writing Programs
We have looked at many powerful features in this chapter. Spend some time mastering
these techniques and you’ll gain great productivity. If you’re a long-time vi user, you’ve
already climbed one steep learning curve. The extra effort to learn Vim’s additional
features is worth a second learning curve.

If you’re a programmer, we hope this chapter shows how much Vim offers for your
programming tasks. We encourage you to try some of these features and even to extend
Vim to your own needs. And maybe you will create extensions to give back to the Vim
community. Now, go program!

Figure 14-30. Quickfix List window after :vimgrep command

284 | Chapter 14: Vim Enhancements for Programmers

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 15

Other Cool Stuff in Vim

Chapters 10 through 14 covered powerful Vim features and techniques we think you
should know about to make effective use of the editor. This chapter takes a lighter look
at Vim. It’s a catch-all for some of the features that didn’t fit into previous topics, ideas
about editing and the Vim philosophy, and some fun things about Vim (not that the
earlier chapters weren’t fun!).

Editing Binary Files
Officially, Vim, like vi, is a text editor. But in pinch, Vim also lets you edit files con-
taining data that is normally unreadable by humans.

Why would you ever want to edit a binary file? Aren’t binary files binary for a reason?
Aren’t binary files typically generated by some application in a well-defined and specific
format?

While we enjoy Vim’s binary editing feature, we do not present an in-
depth discussion about potential serious issues to consider while editing
binary files. For example, some binary files contain digital signatures or
checksums to ensure file integrity. Editing these files risks damaging
their integrity and could render them unusable. Therefore, do not con-
sider this an endorsement of casual binary edits.

It’s true that binary files are typically created by a computerized or analog process and
are not intended to be edited manually. For example, digital cameras often store pic-
tures in JPEG format, a compressed binary format for digital pictures. These are binary,
but they have well-defined sections or blocks where standard information is stored (that
is, they do if they’re implemented according to specification). Digital pictures in JPEG
format store picture meta-information (time of picture, resolution, camera settings,
date, etc.) in reserved blocks separate from the compressed digital picture data. A prac-
tical application might use Vim’s binary file editing feature to edit a directory of JPEG
pictures to change all of the year fields in the “created” block to correct the picture’s
“date of creation” field.

285

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 15-1 shows an editing session on a JPEG file. Notice how the cursor is positioned
over the date field. You can directly edit information about this picture by changing
these fields. 

For power users familiar with a particular binary format, Vim can be extremely handy
for making changes directly that might otherwise require tedious, repetitive access with
other tools.

There are two main ways to edit binary files. You can set the binary option from the
Vim command line:

set binary

or start Vim with the -b option.

To facilitate binary editing and protect Vim from damaging the file’s integrity, Vim sets
the following options accordingly:

• The textwidth and wrapmargin options are set to 0. This stops Vim from inserting
spurious newline sequences into the file.

• The modeline and expandtab options are unset (nomodeline and noexpandtab). This
stops Vim from expanding tabs to shiftwidth spaces, and prevents it from inter-
preting commands in a modeline, which potentially would set options that intro-
duce unexpected and unwanted side effects.

Be careful when moving from window to window, or buffer to buffer,
when using binary mode. Vim uses entry and exit events to set and
change options for switching buffers and windows, and you may con-
fuse it into removing some of the protections just listed. We recommend
a single-window, single-buffer session when editing binary files.

Figure 15-1. Editing a binary JPEG file

286 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Digraphs: Non-ASCII Characters
Do you say that the Messiah is composed by George Frideric Händel, not George Fri-
deric Handel? Do you think your résumé conveys a little more cachet than a resume?
Use Vim’s digraphs to enter special characters.

Even English-language text files occasionally need a special character, especially when
making references to a globalized world. Text files in languages other than English need
scads of special characters.

Vim lets you enter special characters in a number of ways, and two of them are relatively
straightforward and intuitive. Both rely on defining a digraph through a prefix (CTRL-
K ) or the use of the BS  (Backspace) key between two keyboard characters. (The other
methods are more suited to entering characters by their raw numerical values, specified
as decimal, hexadecimal, or octal numbers. While powerful, these methods do not lend
themselves to easy mnemonics for digraphs.)

The term digraph traditionally describes a two-letter combination that
represents a single phonetic sound, such as the ph in “digraph” or “pho-
netic.” Vim borrows the notion of “two-letter” combinations to describe
its input mechanism for characters with special characteristics, typically
accents or other markings such as the umlaut on ä. These special marks
are properly called diacritics, or diacritical marks. In other words, Vim
uses digraphs to create diacritics. Glad we could clear that up.

The first input method for diacritics is a three-character sequence consisting of CTRL-
K , the base letter, and a punctuation character indicating the accent or mark to be
added. For example, to create a c with a cedilla (ç), enter CTRL-K c,. To create an a
with a grave accent (à), enter CTRL-K a!.

Greek letters can be created by a corresponding Latin letter followed by an asterisk (for
instance, enter CTRL-K p* for a lowercase π). Russian letters can be created by a cor-
responding Latin letter followed by an equals sign or, in a few places, a percent sign.
Use CTRL-K ?I (make sure to use a capital I) to enter an inverted question mark (¿)
and CTRL-K ss to enter a German sharp S (ß).

To use Vim’s second method, set the digraph option:

set digraph

Now create special characters by typing the first character of the two-character com-
bination, then a backspace character ( BS ), and then the punctuation that creates a
mark. Thus, enter ç through cBS, and à through aBS!.

Setting the digraph option doesn’t preclude you from entering digraphs with the CTRL-
K  method. Consider using only the CTRL-K  method if your typing is less than stellar.

Digraphs: Non-ASCII Characters | 287

www.it-ebooks.info

http://www.it-ebooks.info/


Otherwise, you may find yourself inadvertently entering digraphs more often than you
want as you backspace and type corrections.

Use the :digraph command to show all the default sequences; more verbose descrip-
tions can be obtained with :help digraph-table. Figure 15-2 shows a partial list from
the digraph command.

In the display, each digraph is represented by three columns. The display is a bit jumbled
because Vim jams as many three-column combinations on each line as the screen per-
mits. For each of the groups, column one shows the digraph’s two-character combi-
nation, column two displays the digraph, and column three lists the decimal Unicode
value for the digraph.

For your convenience, Table 15-1, lists the punctuation to use as the final character in
the sequence to enter the most commonly needed accents and marks.

Table 15-1. How to enter accents and other marks

Mark Character to enter as part of digraph

Acute accent (fiancé) Apostrophe (')

Breve (publică) Left parenthesis (

Caron (Dubček) Less-than sign (<)

Cedilla (français) Comma (,)

Circumflex or carot (português) Greater-than sign (>)

Grave accent (voilà) Exclamation point (!)

Macron (ātmā) Hyphen (-)

Stroke (Søren) Slash (/)

Tilde (señor) Question mark (?)

Umlaut or diaeresis (Noël) Colon (:)

Figure 15-2. Vim digraphs

288 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Editing Files in Other Places
Thanks to seamless integration of network protocols, Vim lets you edit files on remote
machines just as if they were local! If you simply specify a URL for a filename, Vim
opens it in your window and writes your changes to it on the remote system (depending
on your access rights). For instance, the following command edits a .vimrc file owned
by user ehannah on the system mozart. The remote machine offers the SSH secure pro-
tocol on port 122 (this is a nonstandard port, providing additional security through
obscurity):

$ vim scp://ehannah@mozart:122//home/ehannah/.vimrc

Because we’re editing a file in ehannah’s home directory on the remote machine, we can
shorten the URL by using a simple filename. It’s treated as a pathname relative to the
user’s home directory on the remote system:

$ vim scp://ehannah@mozart:122/.vimrc

Let’s take apart the URL so you can learn how to build URLs for your particular
environment:

scp:
The first part, up to the colon, represents the transport protocol. In this example,
the protocol is scp, a file copy protocol built on the Secure Shell (SSH) protocol.
The following : is required.

//
This introduces host information, which for most transport protocols takes the
form [user@]hostname[:port].

ehannah@
This is optional. For secure protocols such as scp, it specifies what user to log in
as on the remote machine. When omitted, it defaults to your username on the local
machine. When you are prompted for a password, you must enter the user’s pass-
word on the remote machine.

mozart
This is the remote machine’s symbolic name, and it can also be specified as a nu-
meric address, e.g., 192.168.1.106.

:122
This is optional and specifies the port on which the protocol is provided. The colon
separates the port number from the preceding hostname. All standard protocols
use well-known ports, so this element of the URL can be omitted if the standard
port is used. In this example, 122 in not the standard port for the scp protocol, and
because the administrator of the mozart system has chosen to provide the service
on 122, this specification is required.

Editing Files in Other Places | 289

www.it-ebooks.info

http://www.it-ebooks.info/


//home/ehannah/.vimrc
This is the file on the remote machine we want to edit. We start with two slashes
because we’re specifying an absolute path. A relative path or simple filename re-
quires only a single slash to separate it from the preceding hostname. A relative
path is relative to the home directory of the user that you logged in as. So, in the
example a relative path would be relative to ehannah’s home directory,
e.g., /home/ehannah.

Here is a partial list of the supported protocols:

• ftp: and sftp: (regular FTP and secure FTP)

• scp: (secure remote copy over SSH)

• http: (file transfer using standard browser protocol)

• dav: (a relatively new but popular proposed open standard for web transfer)

• rcp: (remote copy)

What we’ve described so far is enough to allow remote editing, but the process may
not be as transparent as editing a file locally. That is, because of the intervening re-
quirement to move data from remote hosts, you may be prompted for passwords to do
your work. This can become tedious if you are used to periodically writing your file to
disk while editing, as each of the “writes” is interrupted to prompt you to enter a pass-
word to complete the transaction.

All of the transport protocols in the preceding list allow you to configure the service to
allow password-free access, but the details vary. Use the service’s documentation for
specific protocol details and configurations.

Navigating and Changing Directories
If you’ve used Vim a lot, you may have accidentally discovered that you can view a
directory and move through it using keystrokes similar to those used with files.

Let’s consider a directory containing many .c files, ex-050325 (this happens to be the
directory containing the compilable source for the original vi editor). Edit ex-050325
with:

$ vim ex-050325

Figure 15-3 is a partial screenshot of something similar to what you might see.

Vim displays three types of information: introductory comments (preceded by equals
signs), directories (displayed with trailing slashes), and files. Each directory or file is on
its own line.

There are many ways to use this feature, but with little effort you can be immediately
and intuitively productive with standard Vim motion commands (e.g., w to move to the

290 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


next word, j or the down arrow to jump down one line) and by clicking the mouse over
entries. Some particular features of directory mode include:

• When the cursor is positioned over a directory name, move to that directory by
pressing the ENTER  key.

• If the cursor is over a filename, pressing ENTER  edits that file.

If you want to keep the directory window around for further work in
that directory, edit the file under the cursor by typing o, and Vim will
split the window, editing the file in the newly created window. (This is
also true for moving to another directory when the cursor is over a di-
rectory name; Vim splits the window and “edits” the directory to which
you moved in the new window.)

• You can delete and rename files and directories. Rename a file or directory by typing
capital R. Probably a little counterintuitively, Vim creates a command-line prompt
with which you perform the rename. It should look something like Figure 15-4.

To complete the rename, edit the second command-line argument.

Deleting a file works similarly. Simply position the cursor over the filename you
want to delete and type capital D. Vim prompts you with a verification dialog to
delete the file. As with the rename function, Vim prompts for verification in the
command-line area of the screen.

• One really nice advantage of editing directories is quick access to files through
Vim’s search function. For example, suppose you want to edit the file

Figure 15-3. Vim “editing” the ex-050325 directory

Navigating and Changing Directories | 291

www.it-ebooks.info

http://www.it-ebooks.info/


expreserve.c in the ex-050325 directory described earlier. To quickly navigate to
and edit this file, you can search for part or all of the filename:

/expreserve.c

and with the cursor over that filename, press ENTER  or o.

When you read the online help for directory editing, you will see that
Vim describes it as part of the entire suite of editing files with network
protocols, which was described in the previous section. We have made
directory editing its own topic in this chapter because it is useful, and
it could get lost in the large volume of detail about network protocol
editing.

Backups with Vim
Vim helps protect you from unintentionally losing data by letting you make a backup
of the files you edit. For an edit session that has gone terribly wrong, this can be useful
because you can recover your previous file.

Backups are controlled by the settings of two options: backup and writebackup. Where
and how backups are created are controlled by four other options: backupskip, backup
copy, backupdir, and backupext.

If both the backup and writebackup options are off (i.e., nobackup and nowritebackup),
Vim makes no backup files for your edit sessions. If backup is on, Vim deletes any old
backups and creates a backup for the current file. If backup is off and writebackup is on,
Vim creates a backup file for the duration of the edit session and deletes the backup
afterward.

The backupdir is a comma-separated list of directories in which Vim creates backup
files. For example, if you want backups to always be created in your system’s temporary
directory, set backupdir to "C:\TEMP" for Windows or "/tmp" for Unix and Linux.

Figure 15-4. Prompt for rename in “edit directory”

292 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


If you’d like to always create a backup of your file in the current direc-
tory, you can specify “.” (a dot) as your backup directory. Or you could
try to create a backup in a hidden subdirectory first if it exists, and then
in the current directory if the hidden subdirectory doesn’t exist. Do this
by defining backupdir’s value to be something such as "./.myback
ups,." (the single dot at the end denotes the file’s current directory).
This is a flexible option that supports many strategies for defining back-
up locations.

If you want to make backups for your edit sessions but not for all files, use the
backupskip option to define a comma-separated list of patterns. Vim will not make a
backup of any file matching one of the patterns. For example, you may never want to
back up any files edited in the /tmp or /var/tmp directories. Prevent Vim from doing so
by setting backupskip to "/tmp/*,/var/tmp/*".

By default, Vim creates your backup with the same filename as the original and the
suffix ~ (a tilde). This is a fairly safe suffix, because filenames ending in that character
are rare. Change the suffix to your preference with the backupext option. For example,
if you want your backups to have the suffix .bu, set backupext to the string ".bu".

Finally, the backupcopy option defines how a backup copy is created. We recommend
setting this option to "auto" to let Vim make a calculated choice of the best method for
the backup.

HTML Your Text
Have you ever needed to present your code or text to a group? Have you ever tried to
do a code review but were using someone else’s Vim configuration and couldn’t figure
it out? Consider converting your text or code to HTML and viewing it from a browser.

Vim provides three methods to create an HTML version of your text. They all create a
new buffer with the same name as the original file and the suffix .html Vim splits the
current session window and displays the HTML version of the file in the new window:

gvim “Convert to HTML”
This is the friendliest method, and is built into the gvim graphical editor (described
in Chapter 13). Open the Syntax menu in gvim and select “Convert to HTML.”

2html.vim script
This is the underlying script invoked by the “Convert to HTML” menu option
described in the previous item. Invoke it through the command:

:runtime!syntax/2html.vim

It doesn’t accept a range; it converts the whole buffer.

HTML Your Text | 293

www.it-ebooks.info

http://www.it-ebooks.info/


TOhtml command
This is more flexible than the 2html.vim script, because you can specify an exact
range of lines you want to convert. For instance, to convert lines 25 through 44 of
a buffer, enter:

:25,44TOhtml

One advantage of using gvim for HTML conversion is that the GUI lets it accurately
detect colors and create correct corresponding HTML directives. These methods still
work in a non-GUI context, but the results are less assured to be accurate and may not
be very useful.

It’s up to you to manage the newly created file. Vim does not save it for
you; it merely creates a buffer. We recommend providing a management
policy to save and synchronize HTML versions of your text files. For
example, you could create some autocommands to trigger the creation
and saving of your HTML files.

The saved HTML file can be viewed in any web browser. Some people may not be
familiar with ways to open files on the local system in their browsers. It’s quite easy,
though: virtually all browsers offer an Open File menu option in the File menu and
display a file selection dialog to let you navigate to the folder containing the HTML file.
If you plan on using this feature on a regular basis, we recommend building up a col-
lection of bookmarks for all of your files.

What’s the Difference?
Changes between different versions of a file are often subtle, and a tool that lets you
view precise differences at a glance could save hours of work. Vim integrates the well
known Unix diff command into a very sophisticated visualization interface invoked
through its vimdiff command.

There are two equivalent ways to invoke this feature: as a standalone command and as
an option to Vim:

$ vimdiff old_file new_file
$ vim -d old_file new_file

Typically, the first file to be compared is an old version of a file, and the second is a
newer version, but that is by convention only. Indeed, it’s possible to make a case for
reversing the order.

Figure 15-5 shows an example of vimdiff output. Because of limited real estate, we’ve
squeezed the width and turned off Vim’s wrap option to allow illustration of the
differences.

294 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


Though the figure does not convey the full impact of the visual content (particularly
because colors are reduced to gray), it shows some key characteristic behaviors:

• On line 4, you can see a dark block on the left line that isn’t on the right line. This
is a highlighted word indicating a difference between the two lines. Similarly, on
line 32, the righthand line contains a highlighted word that is not on the left.

• On line 11 of both sides, Vim has created a 15-line fold. These 15 lines in both files
are identical, so Vim folds them to maximize useful “diff” information on the
screen.

• Lines 41–42 on the left are highlighted, whereas in the corresponding positions on
the right, strings of hyphens (-) indicate that the lines are missing. The line
numbering differs from this point on, because the right side has two lines fewer,
but corresponding lines in the two files still line up horizontally.

The vimdiff feature comes with all Unix-like Vim installations because the diff com-
mand is a Unix standard. Non-Unix Vim installations should come with Vim’s own
version of diff. Vim allows drop-in replacements of diff commands as long as they
create standard diff output.

The diffexpr variable defines the replacement expression for the default vimdiff be-
havior and is typically implemented as a script that operates on the following variables:

v:fname_in
The first input file to be compared

Figure 15-5. vimdiff results

What’s the Difference? | 295

www.it-ebooks.info

http://www.it-ebooks.info/


v:fname_new
The second file to be compared

v:fname_out
A file that captures the diff output

Undoing Undos
Beyond the convenience of undoing an arbitrary number of edits, Vim offers an inter-
esting twist called branching undos.

To use this feature, first decide how much control you want over undoing edits. Use
the undolevels option to define the number of undoable changes you can make in an
edit session. The default is 1,000, which is probably more than enough for most users.
If you want vi compatibility, set undolevels to zero:

:set undolevels=0

In vi, the undo command u is basically a toggle between the file’s current state and its
most recent change. The first undo reverts to the state before the last change. The next
undo redoes the undone change. Vim behaves quite differently, and therefore the com-
mands are implemented differently.

Instead of toggling the most recent change, repeated invocations of Vim’s undo rolls
back the state of the file through the most recent changes, in order, for as many changes
as defined by the undolevels option. Because the undo command u only moves back-
ward, we need a command to roll forward and “redo” changes. Vim does this with the
redo command, :redo, or the CTRL-R  key. The CTRL-R  key accepts a numeric prefix
to redo several changes at once.

When rolling forward and backward through changes with the redo ( CTRL-R ) and
undo (u) commands, Vim maintains a map of the file’s state and knows when the last
possible undo has been performed. When all possible undos are done, Vim resets the
file’s modified status, which allows quitting without the ! suffix. Although this is a
modest benefit for general user interaction, it is more useful for behind-the-scenes
scripting where the modified state of the file is important.

For most users, simply undoing and redoing changes is sufficient. But consider a more
complex scenario. What if you make seven changes to a file, and undo three? So far,
so good, nothing unusual to consider. But now, suppose that after undoing three out
of seven changes, you then make a change different from the next forward change in
Vim’s collection of changes? Vim defines that point in the change history as a branch
from which different paths of changes occur. With that path you can now move back
and forth chronologically, with the added twist that at a branch point you can move
forward along any of the different paths of recorded changes.

296 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


For more complete descriptions of how to navigate changes as a tree, use Vim’s help
command:

:help usr_32.txt

Now, Where Was I?
Most text editors start editing files at line 1, column 1. That is, each time the editor is
started, the file is loaded and editing begins from line 1. If you edit a file many times,
progressing through it, you would find it more convenient to begin an edit session
where the last one ended. Vim lets you do just that.

There are two different methods to save edit session information for future uses: the
viminfo option and the mksession command.

The viminfo Option
Vim uses the viminfo option to define what, how, and where to save edit session in-
formation. The option is a string with comma-delimited parameters that tell Vim how
much information to save and where to save it. Some of viminfo’s suboptions are de-
fined by the following:

<n
Tells Vim to save lines for each register, up to a maximum of n lines.

If you do not specify any value for this option, all lines are saved.
While at first this may seem to be the normal desire, consider
whether you commonly edit very large files and make large changes
to those files. For example, if you commonly edit a 10,000-line file
and delete all lines (possibly to pare it down from rapid growth
caused by some external application) and then save it, all 10,000
lines get saved in the viminfo file for that entry. If you do this often
for many files, the viminfo file will grow very large. You may then
notice long delays when starting Vim, even for files not related to
the large file, because Vim must process the viminfo file each time
it starts up.

We recommend specifying some sane but useful limit. This author
uses 50.

/n
The number of search pattern history items to be saved. If not specified, Vim uses
the value in the history option.

:n
The maximum number of commands from the command-line history to save. If
not specified, Vim uses the value in the history option.

Now, Where Was I? | 297

www.it-ebooks.info

http://www.it-ebooks.info/


'n
The maximum number of files for which Vim maintains information. If you define
the viminfo option, this parameter is required.

Here is what Vim saves in the viminfo file:

• Command-line history

• Search string history

• Input-line history

• Registers

• File marks (e.g., a mark created by mx is saved and can be moved to when re-editing
the file by typing 'x)

• Last search and substitute patterns

• Buffer list

• Global variables

This option is really handy for sustaining continuity across edit sessions. For example,
if you edit a large file in which you are changing a pattern, the search pattern is re-
membered as well as where the cursor is positioned in the file. To continue searching
in a new session, you need only type n to move to the next occurrence of the search
pattern.

The mksession Command
Vim saves all edit information specific to a session with its mksession command. The
sessionoptions option contains a comma-separated string specifying which compo-
nents of a session to save. This way of saving edit session information is much more
comprehensive but much more specific than viminfo. Saving session information this
way is specific to all of the files, buffers, windows, etc. in the current edit session, and
mksession saves the information so that the entire session can be reconstructed. All of
the files being edited and all of the settings for all options, even window sizes, are saved
so that reloading the information brings back an exact recreation of the session. Con-
trast this with viminfo, which only restores edit information on a per-file basis.

To save a session this way, enter:

:mksession [filename]

where filename specifies a file in which to save the session information. Vim creates a
script file that, when executed later with the source command, reconstructs the session.
(The default filename, if none was specified, is Session.vim.). So, if you save a session
with the command:

:mksession mysession.vim

you could later reestablish the session with the command:

298 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


:source mysession.vim

Here is what you can save from a session, and the parameter in the sessionoptions
option to save it:

blank
Empty windows

buffers
Hidden and unloaded buffers

curdir
The current directory

folds
Manually created folds, opened/closed folds, and local fold options

It wouldn’t make any sense to save anything but manually created
folds. Automatically created folds will be automatically recreated!

globals
Global variables, which start with an uppercase letter and contain at least one
lowercase letter

help
The help window

localoptions
Options defined locally to a window

options
Options set by :set

resize
Size of the Vim window

sesdir
The directory in which the session file is located

slash
Backslashes in filenames replaced with forward slashes

tabpages
All tab pages

If you do not specify this in the sessionoptions string, only the
current tab session is saved as a standalone entity. This gives you
the flexibility of defining sessions at either the tab level or globally
across all tabs.

Now, Where Was I? | 299

www.it-ebooks.info

http://www.it-ebooks.info/


unix
Unix end-of-line format

winpos
Position of Vim window on the screen

winsize
Size of buffer windows on the screen

So, for example, if you want to save a session to retain all information for all buffers,
all folds, global variables, all options, window size, and window position, you would
define the sessionoptions option with:

:set sessionoptions=buffers,folds,globals,options,resize,winpos

What’s My Line (Size)?
Vim allows lines of virtually unlimited lengths. You can have them either wrap onto
multiple screen lines, so you can see them all without horizontal scrolling, or you can
display the beginning of each line on one screen line and scroll to the right to see hidden
parts.

If you prefer one line of text per screen line, turn off the wrap option:

set nowrap

With nowrap, Vim displays as many characters as the screen width permits. Think of
the screen as a view port or window through which the wide line is viewed. For example,
a 100-character line contains 20 characters too many for a screen that is 80 columns
wide. Depending on what character is displayed in the screen’s first column, Vim de-
termines which characters in the 100-character line are not displayed. For example, if
the screen’s first column is the line’s 5th character, characters 1–4 are to the left of the
visible screen and therefore invisible, that is, not displayed. Characters 5–84 are visible
in the screen, and the remaining characters from 85–100 are to the right of the screen
and are also invisible.

Vim manages how the line is displayed as you move left and right through the long line.
Vim shifts the line left and right a minimum of sidescroll characters. You can set its
value as follows:

set sidescroll=n

where n is the number of columns to scroll. We recommend setting sidescroll to 1,
because modern PCs easily provide the processing power necessary to smoothly shift
the screen one column at a time. If your screen slows down and response times lag, you
may need to bump the value to something higher to minimize the screen redraws.

The sidescroll value defines a minimum shift. As you probably expect, Vim shifts far
enough to complete any motion commands. For example, typing w moves the cursor
to the next word in the line. However, Vim’s treatment of the movement is a bit tricky.

300 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


If the next word is partially visible (on the right), Vim moves to the first character of
that word but does not shift the line. The next w command will shift the line to the left
far enough to position the cursor over the first character of the next word, but only far
enough to expose this first character.

You can control this behavior with the sidescrolloff option. sidescrolloff defines
the minimum number of columns to maintain to the right and left of the cursor. So,
for example, if you defined sidescrolloff to be 10, Vim maintains at least 10 characters
of context as the cursor nears either side of the screen. Now when you move left and
right on a line, your cursor will never get closer than (in this case) 10 columns from
either side of the screen, as Vim shifts enough text into view to maintain that context.
This is probably a better way to configure Vim in nowrap mode.

Vim provides convenient visual cues with the listchar option. listchar defines how
to display characters when Vim’s list option is set. Vim also provides two settings in
this option that control whether to use characters to indicate if there are more characters
to the left or right of the visible screen for long lines. For example:

set listchars=extends:>
set listchars+=precedes:<

tells Vim to display a < in column 1 if a long line contains more characters to the left of
the visible screen, and a > in the last column to indicate there are more characters to
the right of the visible screen. Figure 15-6 shows an example.

Figure 15-6. A long line in nowrap mode

In contrast, if you prefer to see a whole line without scrolling, tell Vim to wrap the lines
with the wrap option:

set wrap

Now the line appears as in Figure 15-7.

Figure 15-7. A long line in wrap mode

Very long lines that can’t be entirely displayed on the screen are displayed with the
single character @ in the first position, until the cursor and file are positioned in such a

What’s My Line (Size)? | 301

www.it-ebooks.info

http://www.it-ebooks.info/


way that the line can be displayed completely. The line in Figure 15-7 appears as shown
in Figure 15-8 when it is near the bottom of the screen.

Figure 15-8. Long line indicator

Abbreviations of Vim Commands and Options
There are so many commands and options in Vim that we recommend learning them
by name first. Almost all commands and options (at least any that have more than a
few characters) have some associated short form. These can save time, but be sure you
know what you’re abbreviating! This author has had some embarrassing and unex-
pected results using short forms thought to be one thing that turned out to be something
quite different.

As you become more experienced and develop your favorite subset of Vim commands
and options, using some of the abbreviated forms for commands and options saves
time. Vim typically tries for Unix-like abbreviations for options and allows for the
shortest unique initial substring for commands’ abbreviations.

Some abbreviations for common commands include:

n next

prev previous

q quit

se set

w write

Some abbreviations for common options include:

ai autoindent

bg background

ff fileformat

ft filetype

ic ignorecase

li list

nu number

sc showcommand (not showcase)

sm showmatch

302 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.it-ebooks.info/


sw shiftwidth

wm wrapmargin

Short forms for commands and options save time when you know your commands and
options well. But for scripting and setting up sessions with commands in your .vimrc
or .gvimrc files, you’re more likely to save time in the long run by sticking with full
command and option names. Your configuration file and scripts are easier to read and
debug when you use full names.

Note that this is not the approach taken with the suite of Vim script files
(syntax, autoindent, colorscheme, etc.) in the Vim distribution, though
we take no issue with their approach. We just recommend, for ease of
managing your own scripts, that you stay with full names.

A Few Quickies (Not Necessarily Vim-Specific)
We now offer several techniques—some of which are offered by basic vi as well as
Vim—that are worth remembering and having handy:

A quick swap
A common typing error is to enter two characters in the wrong order. Position the
cursor over the first wayward character and type xp (delete character, put
character).

Another quick swap
Got two lines you’d rather swap? Position the cursor on the top line, and type
ddp (delete line, put line after current line).

Quick help
Don’t forget about Vim’s built-in help. A quick tap on the F1  function key splits
your screen and displays the introduction to the online help.

What was that great command I used?
In its simplest form, Vim lets you access recently executed commands by using the
arrow keys in the command line. Moving up and down with the arrow keys, Vim
displays recent commands, any one of which you may edit. Whether or not you
edit a command from Vim’s history, you can execute the command by pressing
the ENTER  key.

You can get even more sophisticated by invoking Vim’s built-in command history
editing. Do this by entering CTRL-F  on the command line. A small “command”
window opens up (with the default height of 7) in which you can navigate with
normal Vim motion commands. You can search as if in a normal Vim buffer, and
make changes.

A Few Quickies (Not Necessarily Vim-Specific) | 303

www.it-ebooks.info

http://www.it-ebooks.info/


In the command edit window, you can easily find a recent command, modify it if
necessary, and execute it by pressing ENTER . You can write the buffer to a file-
name of your choice, to record the command history for future reference.

A bit of humor
Try entering the command:

:help sure

and read Vim’s reply.

More Resources
Here are two links for HTML renditions of Vim’s built-in help for the two most recent
major Vim releases:

Vim 6.2
http://www.vim.org/htmldoc/help.html

Vim 7
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

Additionally, http://vimdoc.sourceforge.net/vimfaq.html is a Vim Frequently Asked
Questions list. It doesn’t link questions to answers, but it is all on one page. We rec-
ommend scrolling down to the section with the answers and scanning from there.

The official Vim page used to host tips on Vim, but because of problems with spammers,
the administrators moved the tips to a wiki where spam is more easily managed. That
wiki is here: http://vim.wikia.com/wiki/Category:Integration.

304 | Chapter 15: Other Cool Stuff in Vim

www.it-ebooks.info

http://www.vim.org/htmldoc/help.html
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://vimdoc.sourceforge.net/vimfaq.html
http://vim.wikia.com/wiki/Category:Integration
http://www.it-ebooks.info/


PART III

Other vi Clones

Part III covers other popular clones of vi that have grown up in parallel with Vim. This
part contains the following chapters:

• Chapter 16, nvi: New vi

• Chapter 17, Elvis

• Chapter 18, vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 16

nvi: New vi

nvi is short for “new vi.” It was developed initially at the University of California at
Berkeley (UCB), home of the famous Berkeley Software Distribution (BSD) versions of
Unix. It was used for writing this chapter. 

Author and History
The original vi was developed at UCB in the late 1970s by Bill Joy, then a computer
science graduate student, and later a founder and vice president of Sun Microsystems.

Prior to nvi, Bill Joy first built ex, by starting with and heavily enhancing the sixth
edition ed editor. The first enhancement was open mode, done with Chuck Haley. 
Between 1976 and 1979, ex evolved into vi. Mark Horton then came to Berkeley, added
macros “and other features,”* and did much of the labor on vi to make it work on a
large number of terminals and Unix systems. By 4.1BSD (1981), the vi editor already
had essentially all of the features we have described in Part I of this book.

Despite all of the changes, vi’s core was (and is) the original Unix ed editor. As such,
it was code that could not be freely distributed. By the early 1990s, when they were
working on 4.4BSD, the BSD developers wanted a version of vi that could be freely
distributed in source code form.

Keith Bostic of UCB started with elvis 1.8,† which was a freely distributable vi clone,
and began turning it into a “bug for bug compatible” clone of vi. nvi also complies
with the POSIX Command Language and Utilities Standard (IEEE P1003.1) where it
makes sense to do so.

Although no longer affiliated with UCB, Keith Bostic continues to distribute nvi. The
current version at the time of this writing is nvi 1.79.

* From the nvi reference manual. Unfortunately, it does not say which features.

† Although little or no original elvis code is left.

307

www.it-ebooks.info

http://www.it-ebooks.info/


nvi is important because it is the “official” Berkeley version of vi. It is part of 4.4BSD-
Lite II, and it is the vi version used on the various popular BSD variants, such as NetBSD
and FreeBSD.

Important Command-Line Arguments
In a pure BSD environment, nvi is installed under the names ex, vi, and view. Typically
they are all links to the same executable, and nvi looks at how it is invoked to determine
its behavior. (Unix vi works this way, too.) It allows the Q command from vi mode to
switch it into ex mode. The view variant is like vi, except that the readonly option is
set initially.

nvi has a number of command-line options. The most useful are described here:

-c command
Execute command upon startup. This is the POSIX version of the historical
+command syntax, but nvi is not limited to positioning commands. (The old syntax
is also accepted.)

-F
Don’t copy the entire file when starting to edit. This may be faster, but it allows
the possibility of someone else changing the file while you’re working on it.

-r
Recover specified files, or if no files are listed on the command line, list all the files
that can be recovered.

-R
Start in read-only mode, setting the readonly option.

-s
Enter batch (script) mode. This is only for ex and is intended for running editing
scripts. Prompts and nonerror messages are disabled. This is the POSIX version of
the historic “-” argument; nvi supports both.

-S
Run with the secure option set, disallowing access to external programs.‡

-t tag
Start editing at the specified tag.

-w size
Set the initial window size to size lines.

‡ As with anything labeled “secure,” blind trust is usually inappropriate. Keith Bostic says, though, that you
can trust nvi’s secure option.

308 | Chapter 16: nvi: New vi

www.it-ebooks.info

http://www.it-ebooks.info/


Online Help and Other Documentation
nvi comes with quite comprehensive printable documentation. In particular, it comes
with troff source, formatted ASCII, and formatted PostScript for the following
documents:

The vi reference manual
The reference manual for nvi. This manual describes all of the nvi command-line
options, commands, options, and ex commands.

The vi manpage
The manpage for nvi.

The vi tutorial
This document is a tutorial introduction to editing with vi.

The ex reference manual
The reference manual for ex. This manual is the original one for ex; it is a bit out-
of-date with respect to the facilities in nvi.

Also included are ASCII files that document some of the nvi internals and provide a
list of features that should be implemented, along with files that can be used as an
online tutorial to vi.

The online help built into nvi is minimal, consisting of two commands, :exusage
and :viusage. These commands provide one-line summaries of each ex and vi com-
mand. This is usually sufficient to remind you about how something works, but not
very good for learning about new or obscure features in nvi.

You can give a command as an argument to the :exusage and :viusage commands, in
which case nvi will display the help just for that command. nvi prints one line explain-
ing what the command does, and a one-line summary of the command’s usage.

Initialization
If the -s or “-” options have been specified, then nvi will bypass all initializations.
Otherwise, nvi performs the following steps:

1. Read and execute the file /etc/vi.exrc. It must be owned either by root or by you.

2. Execute the value of the NEXINIT environment variable if it exists; otherwise, use
EXINIT if it exists. Only one will be used, not both. Bypass executing $HOME/.nexrc or
$HOME/.exrc.

3. If $HOME/.nexrc exists, read and execute it. Otherwise, if $HOME/.exrc exists, read
and execute it. Only one will be used.

4. If the exrc option has been set, then look for and execute either ./.nexrc if it exists,
or ./.exrc. Only one will be used.

nvi will not execute any file that is writable by anyone other than the file’s owner.

Online Help and Other Documentation | 309

www.it-ebooks.info

http://www.it-ebooks.info/


The nvi documentation suggests putting common initialization actions into
your .exrc file (i.e., options and commands for Unix vi), and having your .nexrc file
execute :source .exrc before or after the nvi-specific initializations.

Multiwindow Editing
To create a new window in nvi, you use a capitalized version of one of the ex editing
commands: Edit, Fg, Next, Previous, Tag, or Visual. (As usual, these commands can be
abbreviated.) If your cursor is in the top half of the screen, the new window is created
on the bottom half, and vice versa. You then switch to another window with CTRL-W :

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any existing
Unix text file.
</para>
ch00.sgm: unmodified: line 1
# Makefile for vi book
#
# Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
    ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
    ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \
Makefile: unmodified: line 1

This example shows nvi editing two files, ch00.sgm and Makefile. The split screen is
the result of typing nvi ch00.sgm followed by :Edit Makefile. The last line of each
window acts as the status line, and it’s where colon commands are executed for that
window. The status lines are highlighted in reverse video.

The windowing ex mode commands and what they do are described in Table 16-1.

Table 16-1. nvi window management commands

Command Function

bg Hide the current window. It can be recalled with the fg and Fg commands.

di[splay]
b[uffers]

Display all buffers, including named, unnamed, and numeric buffers.

di[splay]
s[creens]

Display the filenames of all backgrounded windows.

Edit filename Edit filename in a new window. 

310 | Chapter 16: nvi: New vi

www.it-ebooks.info

http://www.it-ebooks.info/


Command Function

Edit /tmp Create a new window editing an empty buffer. /tmp is interpreted specially to create a
new temporary file.

fg filename Uncover filename into the current window. The previous file moves to the background.

Fg filename Uncover filename in a new window. The current window is split, instead of redistributing
the screen space among all open windows.

Next Edit the next file in the argument list in a new window. 

Previous Edit the previous file in the argument list in a new window. (The corresponding
previous command, which moves back to the previous file, exists in nvi; it is not in Unix
vi.)

resize ±nrows Increase or decrease the size of the current window by nrows rows. 

Tag tagstring Edit the file containing tagstring in a new window. 

The CTRL-W  command cycles between windows, top to bottom. The :q and ZZ com-
mands exit the current window.

You may have multiple windows open on the same file. Changes made in one window
are reflected in the other, although changes made in nvi’s insert mode are not seen in
the other window until after you finalize the change by typing ESC . You will not be
prompted to save your changes until you issue a command that would cause nvi to
leave the last window open upon a file.

GUI Interfaces
nvi does not provide a graphical user interface (GUI) version.

Extended Regular Expressions
We introduced extended regular expressions earlier in the section “Extended Regular
Expressions” on page 128. Here, we just summarize the metacharacters that nvi pro-
vides. nvi also supports the POSIX bracket expressions, [[:alnum:]], and so on.

You use :set extended to enable extended regular expression matching:

|
Indicates alternation. The left and right sides need not be just single characters.   

(...)
Used for grouping, to allow the application of additional regular expression
operators.

When extended is set, text grouped with parentheses acts like text grouped in
\(...\) in regular vi; the actual text matched can be retrieved in the replacement
part of a substitute command with \1, \2, etc. In this case, \( represents a literal
left parenthesis.

GUI Interfaces | 311

www.it-ebooks.info

http://www.it-ebooks.info/


+
Matches one or more of the preceding regular expressions. This is either a single
character or a group of characters enclosed in parentheses.

?
Matches zero or one occurrence of the preceding regular expression.

{...}
Defines an interval expression. Interval expressions describe counted numbers of
repetitions. In the following descriptions, n and m represent integer constants:

{n}
Matches exactly n repetitions of the previous regular expression.

{n,}
Matches n or more repetitions of the previous regular expression.

{n,m}
Matches n to m repetitions.

When extended is not set, nvi provides the same functionality with \{ and \}.

As might be expected, when extended is set, you should precede metacharacters with
a backslash in order to match them literally.

Improvements for Editing
This section describes the features of nvi that make simple text editing easier and more
powerful.

Command-Line History and Completion
nvi saves your ex command lines and makes it possible for you to edit them for resub-
mission.

This facility is controlled with the cedit option, whose value is a string.

When you type the first character of this string on the colon command line, nvi opens
a new window on the command history that you can then edit. On any given line when
you hit ENTER , nvi executes that line. ESC  is a good choice for this option. (Use
^V ^[ to enter it.)

Because the ENTER  key actually executes the command, be careful to use either the
j or ↓ keys to move down from one line to the next.

In addition to being able to edit your command line, you can also do filename expan-
sion. This feature is controlled with the filec option. 

When you type the first character of this string on the colon command line, nvi treats
the blank delimited word in front of the cursor as if it had an * appended to it and does
shell-style filename expansion. ESC  is also a good choice for this option. (Use ̂ V ^[ to

312 | Chapter 16: nvi: New vi

www.it-ebooks.info

http://www.it-ebooks.info/


enter it.) When this character is the same as for the cedit option, the command-line
editing is performed only when it is entered as the first character on the colon command
line.

The nvi documentation indicates that TAB  is another common choice
for the filec option. To make this work, you must type :set filec=
\TAB . In any case, in practice, using ESC  for both options works well.

It is easiest to set these options in your .nexrc file:

set cedit=^[
set filec=^[

Tag Stacks
Tag stacking is described earlier in the section “Tag Stacks” on page 131. nvi’s tag stack
is the simplest of the four clones. Tables 16-2 and 16-3 show the commands it uses.

Table 16-2. nvi tag commands

Command Function

di[splay] t[ags] Display the tag stack. 

ta[g][!] tagstring Edit the file containing tagstring as defined in the tags file. The ! forces
nvi to switch to the new file if the current buffer has been modified but
not saved.

Ta[g][!] tagstring Just like :tag, except that the file is edited in a new window.

tagp[op][!] tagloc Pop to the given tag, or to the most recently used tag if no tagloc is supplied.
The location may be either a filename of the tag of interest or a number
indicating a position in the stack.

tagt[op][!] Pop to the oldest tag in the stack, clearing the stack in the process.

Table 16-3. nvi command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file, and
move to that location. The current location is automatically pushed onto
the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one element.

You can set the tags option to a list of filenames where nvi should look for a tag. This
provides a simplistic search path mechanism. The default value is "tags /var/db/
libc.tags /sys/kern/tags", which on a 4.4BSD system looks in the current directory,
and then in the files for the C library and the operating system source code.

The taglength option controls how many characters in a tag string are significant. The
default value of zero means to use all the characters.

Improvements for Editing | 313

www.it-ebooks.info

http://www.it-ebooks.info/


nvi behaves like vi: it uses the “word” under the cursor starting at the current cursor
position. If your cursor is on the i in main, nvi searches for the identifier in, not main.

nvi relies on the traditional tags file format. Unfortunately, this format is very limited.
In particular, it has no concept of programming language scope, which allows the same
identifier to be used in different contexts to mean different things. The problem is
exacerbated by C++, which explicitly allows function name overloading, i.e., the use
of the same name for different functions.

nvi gets around the tags file limitations by using a different mechanism entirely: the 
cscope program. cscope, once proprietary, is now an open source program available
from the Bell Labs World-Wide Exptools project (see http://www.bell-labs.com/project/
wwexptools/). It reads C source files and builds a database describing the program.
nvi provides commands that query the database and allow you to process the results.
Because cscope is not universally available, we do not cover its use here. Details of the
nvi commands are provided in the nvi documentation.

The extended tags file format produced by Exuberant ctags does not produce any
errors with nvi 1.79; however, nvi does not take advantage of this format, either.

Infinite Undo
In vi, the dot (.) command generally acts as the “do again” command; it repeats the
last editing action you performed, be it a deletion, insertion, or replacement.

nvi generalizes the dot command into a full “redo” command, applying it even if the
last command was u for “undo.”

Thus, to begin a series of “undo” commands, first type a u. Then, for each . (dot) that
you type, nvi will continue to undo changes, moving the file progressively closer to its
original state.

Eventually, you will reach the initial state of your file. At that point, typing . will just
ring the bell (or flash the screen). You can now begin redoing by typing u to “undo the
undos” and then using . to reapply successive changes.

nvi does not allow you to provide a count to either the u or . command.

Arbitrary Length Lines and Binary Data
nvi can edit files with arbitrary length lines and with an arbitrary number of lines.

nvi automatically handles binary data. No special command-line options or ex options
are required. You use ^X followed by one or two hexadecimal digits to enter any 8-bit
character into your file.

314 | Chapter 16: nvi: New vi

www.it-ebooks.info

http://www.bell-labs.com/project/wwexptools/
http://www.bell-labs.com/project/wwexptools/
http://www.it-ebooks.info/


Incremental Searching
Enable incremental searching in nvi using :set searchincr.

The cursor moves through the file as you type, always being placed on the first character
of the text that matches.

Left-Right Scrolling
Enable left-right scrolling in nvi using   :set leftright. The value of sidescroll controls
the number of characters by which nvi shifts the screen when scrolling left to right.

Programming Assistance
nvi does not provide specific programming assistance facilities.

Interesting Features
nvi is the most minimal of the clones, without a large number of additional features
that have not yet been covered. However, it does have several important features worthy
of mention:

Internationalization support
Most of the informational and warning messages in nvi can be replaced with trans-
lations into a different language, using a facility known as a “message catalog.”
nvi implements this facility itself, using a straightforward mechanism documented
in the file catalog/README in the nvi distribution. Message catalogs are provided
for Dutch, English, French, German, Russian, Spanish, and Swedish.

Arbitrary buffer names
Historically, vi buffer names are limited to the 26 characters of the alphabet. nvi
allows you to use any character as a buffer name.

Special interpretation of /tmp
For any ex command that needs a filename argument, if you use the special
name /tmp, nvi will replace it with the name of a unique temporary file.

Sources and Supported Operating Systems
nvi can be obtained from http://www.bostic.com/vi. This is a web page from which you
can download the current version,§ and can also ask to be added to a mailing list that
sends notifications about new versions of nvi and new features.

§ A GUI version of nvi is under development; see the web page for contact information if you’re interested.

Programming Assistance | 315

www.it-ebooks.info

http://www.bostic.com/vi
http://www.it-ebooks.info/


The source code for nvi is freely distributable. The licensing terms are described in the
LICENSE file in the distribution, and they permit distribution in source and binary form.

nvi builds and runs under Unix. It can also be built to run under LynxOS 2.4.0, and
possibly later versions. It may build and run on other POSIX-compliant systems as well,
but the documentation does not contain a specific list of known operating systems.

Compiling nvi is straightforward. Retrieve the distribution via ftp. Uncompress and
untar it, run the configure program, and then run make:

$ gzip -d < nvi.tar.gz | tar -xvpf -
...
$ cd nvi-1.79; ./configure
...
$ make
...

nvi should configure and build with no problems. Use make install to install it.

Should you need to report a bug or problem in nvi, the person to contact is Keith Bostic,
at bostic@bostic.com.

316 | Chapter 16: nvi: New vi

www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 17

Elvis

elvis was written and is maintained by Steve Kirkendall. An earlier version became the
basis for nvi. This chapter was originally written using elvis. 

Author and History
With our thanks for his help, we’ll let Steve Kirkendall give the history in his own words:

I started writing elvis 1.0 after an early clone called stevie crashed on me, causing me
to lose a few hours’ work and totally destroying my confidence in that program. Also,
stevie stored the edit buffer in RAM, which simply wasn’t practical in Minix. So I started
writing my own clone, which stored its edit buffer in a file. And even if my editor crashed,
the edited text could still be retrieved from that file.

elvis 2.x is almost completely separate from 1.x. I wrote this, my second vi clone, be-
cause my first one inherited too many limitations from the real vi, and from Minix. The
biggest change is the support for multiple edit buffers and multiple windows, neither of
which could be retrofitted into 1.x very easily. I also wanted to shed the line-length
limitation, and have online help written in HTML.

As to the name “elvis,” Steve says that at least part of the reason he chose the name was
to see how many people would ask him why he chose the name!* It is also common for
vi clones to have the letters “vi” somewhere in their names.

Important Command-Line Arguments
elvis is not typically installed as vi, though it can be. If invoked as ex, it operates as a
line editor and allows the Q command from vi mode to switch into ex mode.

elvis has a number of command-line options. The most useful are described here:

-a
Load each file named on the command line into a separate window.

* ☺ In around eight years, I was only number four! —A.R.

317

www.it-ebooks.info

http://www.it-ebooks.info/


-c command
Execute command upon startup. This is the POSIX version of the historical
+command syntax. (The old syntax is also accepted.)

-f filename
Use filename for the session file instead of the default name. Session files are dis-
cussed later in this chapter.

-G gui
Use the given interface. The default is the termcap interface. Other choices include
x11, windows, curses, open, and quit. Not all the interfaces may be compiled into
your version of elvis.

-i
Start editing in input mode instead of in command mode.  This may be easier for
novice users.

-o logfile
Redirect the startup messages out to a file, instead of stdout/stderr. This is of
critical importance to MS Windows users because Windows discards anything
written to standard output and standard error, which made WinElvis configuration
problems almost impossible to diagnose. With -o filename you can send the di-
agnostic info to a file and view it later.

-r
Perform recovery after a crash. 

-R
Start editing each file in read-only mode.

-s
Read an ex script from standard input and execute (per the POSIX standard). This
bypasses all initialization scripts.

-S
Set the option security=safer for the whole session, not just execution of .exrc
files. This adds a certain amount of security, but it should not necessarily be trusted
blindly.

-SS
Set the option security=restricted, which is even more paranoid than
security=safer.

-t tag
Start editing at the specified tag.

-V
Output more verbose status information. Useful for diagnosing problems with in-
itialization files.

-?
Print a summary of the possible options.

318 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Online Help and Other Documentation
elvis is very interesting in this department. The online help is comprehensive and
written entirely in HTML. This makes is easy to view in your favorite web browser.
elvis also has an HTML display mode (discussed later), which makes it easy and
pleasant to view the online help from within elvis itself.

When viewing HTML files, you use the tag commands (^] and ^T) to go to different
topics and then return, making it easy to browse the help files. We applaud this inno-
vation in online help.

Of course, elvis also comes with Unix manpages.

Initialization
This section describes elvis’s session files and itemizes the steps it takes during
initialization.

The Session File
elvis is intended to eventually meet Common Open System Environment (COSE)
standards. These require that programs be able to save their state and return to that
saved state at a later time.

To be able to do this, elvis maintains all its state in a session file. Normally elvis creates
the session file when it starts and removes it when it exits, but if elvis crashes, a left-
over session file can be used to implement recovery of the edited files.

Initialization Steps
elvis performs the following initialization steps. Interestingly, much of the customi-
zation for elvis is moved out of editor options and into initialization files:

1. Initialize all hardcoded options.

2. Select an interface from those compiled into elvis. elvis will choose the “best” of
the ones that are compiled in and that can work. For example, the X11 interface
is considered to be better than the termcap interface, but it may not be usable if the
X Window System is not currently running.

The selected interface can process the command line for initialization options that
are specific to it.

3. Create the session file if it doesn’t exist; otherwise, read it (in preparation for
recovery).

Online Help and Other Documentation | 319

www.it-ebooks.info

http://www.it-ebooks.info/


4. Initialize the elvispath option from the ELVISPATH environment variable. Other-
wise, give it a default value. "~/.elvislib:/usr/local/lib/elvis" is a typical value,
but the actual value will depend on how elvis was configured and built.

5. Search elvispath for an ex script named elvis.ini and run it. The default
elvis.ini file performs the following actions:

• Chooses a digraph table based on the current operating system. (Digraphs are
a way to define the system’s extended ASCII character set and how characters
from the extended set should be entered.)

• Sets options based on the program’s name (for example, ex versus vi mode).

• Handles system-dependent tweaks, such as setting the colors for X11 and adding
menus to the interface.

• Picks an initialization filename, either .exrc for Unix or elvis.rc for non-Unix
systems. Call this file f.

• If the EXINIT environment variable exists, executes its value. Otherwise, it exe-
cutes :source ~/f, where f is the filename chosen previously.

• If the exrc option has been set, runs the safely source command on f in the
current directory.

• For X11, sets the normal, bold, and italic fonts, if they have not been set already.

6. Load the pre- and post-read and pre- and post-write command files, if they exist.
Also load the elvis.msg file. All of these files are described later in this chapter.

7. Load and display the first file named on the command line.

8. If the -a option was given, load and display the rest of the files, each in its own
window.

Multiwindow Editing
To create a new window in elvis, you use the ex command :split. You then use one
of the regular ex commands, such as :e filename or :n to edit a new file. This is the
simplest method; other, shorter methods are described later in this chapter. You can
switch back and forth between windows with CTRL-W  CTRL-W :

320 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing Unix text file.
_____________________________________________________________________
# Makefile for vi book
#
# Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
        ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
        ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \
        appa.ps appb.ps appc.ps appd.ps

The split screen is the result of typing elvis ch00.sgm followed by :split Makefile.

Like nvi, elvis gives each window its own status line. elvis is unique in that it uses a
highlighted line of underscores, instead of reverse video, for the status line. ex colon
commands are carried out on each window’s status line.

Table 17-1 describes the windowing ex mode commands and what they do.

Table 17-1. elvis window management commands

Command Function

sp[lit] [file] Create a new window, and load it with file if supplied. Otherwise, the new
window shows the current file.

new Create a new empty buffer, and then create a new window to show that
buffer.sne[w]

sn[ext] [file...] Create a new window,  showing the next file in the argument list. The
current file is not affected.

sN[ext] Create a new window, showing the previous file in the argument list. The
current file is not affected.

sre[wind][!] Create a new window, showing the first file in the argument list. Reset the
“current” file to be the first one with respect to the :next command. The
current file is not affected.

sl[ast] Create a new window, showing the last file in the argument list. The cur-
rent file is not affected.

sta[g][!] tag Create a new window showing the file where the requested tag is found.

sa[ll] Create a new window for any files named in the argument list that don’t
already have a window.

wi[ndow] [target] With no target, list all windows. The possible values for target are
described in Table 17-2.

Multiwindow Editing | 321

www.it-ebooks.info

http://www.it-ebooks.info/


Command Function

close Close the current window. The buffer that the window was displaying
remains intact. If it was modified, the other elvis commands that quit will
prevent you from quitting until you explicitly save or discard the buffer.

wquit Write the buffer back to the file and close the window. The file is saved,
regardless of whether it has been modified.

qall Issues a :q command for each window. Buffers without windows are not
affected.

Table 17-2 describes the windowing ex arguments and their meanings.

Table 17-2. Arguments to the elvis window command

Argument Meaning

+ Switch to the next window, like ^W k.

++ Switch to the next window, wrapping like ^W ^W.

- Switch to the previous window, like ^W j.

-- Switch to the previous window, wrapping.

num Switch to the window whose windowid=num.

buffer-name Switch to the window editing the named buffer.

elvis provides a number of vi mode commands for moving between windows. They
are summarized in Table 17-3.

Table 17-3. elvis window commands from vi command mode

Command Function

^W c Hide the buffer and close the window. This is identical to the  :close
command.

^W d Toggle the display mode between syntax mode and the other display
modes (html, man, tex) if that’s appropriate. This makes editing web pages
a little more convenient. This is a per-window option. Display modes are
discussed in the later section “Display Modes” on page 337.

^W j Move down to the next window.

^W k Move up to the previous window.

^W n Create a new window, and create a new buffer to be displayed in the win-
dow. It is similar to the :snew command.

^W q Save the buffer and close the window, identical to ZZ.

^W s Split the current window, equivalent to :split.

^W S Toggle the wrap option. This option controls whether long lines wrap or
whether the whole screen scrolls to the right. This is a per-window option.
This option is discussed in the later section “Left-Right Scrolling” on page
331.

^W ] Create a new window, then look up the tag underneath the cursor. It is
similar to the :stag command.

[count] ^W ^W Move to next window, or to the countth window.

322 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Command Function

^W + Increase the size of the current window (termcap interface only).

^W - Reduce the size of the current window (termcap interface only).

^W \ Make the current window as large as possible (termcap interface only).

GUI Interfaces
The screenshots and explanation for this section were supplied by Steve Kirkendall.
We thank him.

elvis’s X11 interface provides a scrollbar and mouse support, and it allows you to select
which fonts to use. There is no way to change fonts after elvis has created the first
window. The fonts must all be monospace fonts, typically some variation of a Courier
or other fixed-width font.

elvis’s X11 interface supports multiple fonts and colors, a blinking cursor that changes
shape to indicate your editing mode (insert versus command), a scrollbar, anti-aliased
text, an image file to use for the background (with optional tint), a user-specified icon
image, and mouse actions. The mouse can be used for selecting text, cutting and pasting
between applications, and performing tag searches. In addition, there is a configurable
toolbar, dialog windows, a status bar, and the -client flag.

The MS Windows GUI interface also supports a background image file,
using the same command and using XPM format files, so that the same
background image file may be used in both environments.

The Basic Window
The basic elvis window is shown in Figure 17-1.

elvis provides a separate text search pop-up dialog box, which is shown in Figure 17-2.

The look and feel are intended to resemble Motif, but elvis doesn’t actually use the
Motif libraries.

Command-line options let you choose the four different fonts that elvis uses: normal,
italic, bold, and “control,” which is the font for the toolbar text and button labels. You
may also specify foreground and background colors, the initial window geometry, and
whether elvis should start out iconified.

The -client option causes elvis to look for an already running elvis process and send
it a message requesting it to start editing the files named on the command line. Doing
it this way allows you to share yanked text and other information between the files
elvis is currently editing and the new files.

GUI Interfaces | 323

www.it-ebooks.info

http://www.it-ebooks.info/


Besides the toolbar, there is also a status bar that displays status messages and any
available information about toolbar buttons.

Mouse Behavior
The mouse behavior tries to strike a balance between xterm and what makes sense for
an editor. To do this correctly, elvis distinguishes between clicking and dragging.

Figure 17-1. The elvis GUI window

Figure 17-2. The elvis search dialog

324 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Dragging the mouse always selects text. Dragging with button 1 pressed selects char-
acters, dragging with button 2 selects a rectangular area, and dragging with button 3
selects whole lines. (Buttons 1, 2, and 3 correspond to the left, middle, and right buttons
for a right-handed user. The order will be the opposite for a left-handed user.) These
operations correspond to elvis’s v, ^V, and V commands, respectively. (These com-
mands are described later in this chapter.) When you release the button at the end of
the drag, the selected text is immediately copied into an X11 cut buffer, so you can
paste it into another application, such as xterm. The text remains selected, so you can
apply an operator command to it.

Clicking button 1 cancels any pending selection and moves the cursor to the clicked-
on character. Clicking button 3 moves the cursor without canceling the pending
selection; you use this to extend a pending selection.

Clicking button 2 “pastes” text from the X11 cut buffer (such as xterm). If you’re en-
tering an ex command line, the text will be pasted into the command line as though
you had typed it. If you’re in visual command mode or input mode, the text will be
pasted into your edit buffer. When pasting, it doesn’t matter where you click in the
window; elvis always inserts the text at the position of the text cursor.

Double-clicking button 1 simulates a ̂ ] keystroke, causing elvis to perform tag lookup
on the clicked-on word. If elvis happens to be displaying an HTML document, then
tag lookup pursues hypertext links, so you can double-click on any underlined text to
view the topic that describes that text. Double-clicking button 3 simulates a ^T key-
stroke, taking you back to where you did the last tag lookup.

The Toolbar
The X11 interface supports a user-configurable toolbar. By default, the toolbar is ena-
bled unless your ~/.exrc file has a set notoolbar command.

The default toolbar already has some buttons defined. You use the :gui command to
reconfigure the toolbar.

There are a number of commands. In particular, you can reconfigure the toolbar to suit
your tastes, deleting one or all of the existing buttons, adding new ones, and controlling
the spacing between buttons or groups of buttons. Here is a simple example:

:gui Make:make
:gui Make " Rebuild the program
:gui Quit:q
:gui Quit?!modified

These commands add two new buttons. The first line adds a button named Make,
which will execute the :make command when pressed. (The :make command is
described later in this chapter.) The second line adds descriptive text for the Make
button that shows up in the status line when the button is pressed. In this case, the "
does not start a comment; rather it is an operator for the :gui command.

GUI Interfaces | 325

www.it-ebooks.info

http://www.it-ebooks.info/


The second button, named Quit, is created by the third line. It exits the program. The
fourth line changes its behavior. If the condition (!modified) is true, the button will
behave normally. But if it’s false, the button will ignore any mouse clicks, and it will
also be displayed as being “flat” instead of having the normal 3-D appearance. Thus,
if the current file is modified, you won’t be able to use the Quit button to exit.

You can create pop-up dialogs that appear when a toolbar button is pressed. The dialog
can set the value(s) of predefined variables (options) that can then be tested from the
ex command associated with the button. There are 26 predefined variables, named
a–z, that are set aside for user “programs” of this sort to use. This example associates
a dialog with a new button named Split:

:gui Split"Create a new window, showing a given file
:gui Split;"File to load:" (file) f = filename
:gui Split:split (f)

The first command associates descriptive text with the Split button. The second com-
mand creates the pop-up dialog: its prompt  is File to load: and it will set the file
name option. The (file) indicates that any string may be entered, but that the TAB  key
may be used for filename completion. The f = filename copies the value of filename
into f. Finally, the third command actually executes the :split command on the value
of f, which will be the new filename supplied by the user.

The facility is quite flexible; see the online help for the full details.

Options
A large number of options control the X11 interface. You typically set these in
your .exrc file. There are options and abbreviations for setting the various fonts, and
for enabling and configuring the toolbar, status bar, scrollbars, and the cursor. Other
options control the cursor’s behavior when you switch windows with ^W ^W and
whether the cursor goes back to the original xterm when elvis exits.

The online documentation describes all of the X11-related ex options. Here, we describe
some of the more interesting ones:

autoiconify
Normally, when the ^W ^W command switches focus to an iconified window, that
window is de-iconified. When autoiconify is true, elvis will iconify the old win-
dow, so that the number of open elvis windows remains constant.

blinktime
The value is a number between 1 and 10 that indicates for how many 10ths of a
second the cursor should be visible and then invisible. A value of 0 disables
blinking.

firstx, firsty, stagger
firstx and firsty control the position of the first window that elvis creates. If not
set, the -geometry option or the window manager controls placement. If stagger is

326 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


set to a nonzero value, any new windows are created that many pixels down and
to the right of the current window. Setting it to zero lets the window manager do
the placement.

stopshell
Stores a command that runs an interactive shell, for the ex commands :shell
and :stop, and for the ^Z visual command. The default value is xterm &, which
starts an interactive terminal emulator in another window.

xscrollbar
Values left and right place the scrollbar on the indicated side of the window, and
none disables the scrollbar. The default is right.

elvis can be configured via X resources.† The resource values can be overridden by
command-line flags, or by explicit :set or :color commands in the initialization scripts.
elvis’s resources are listed in Table 17-4.

Table 17-4. elvis X resources

Resource class (name is lowercase of class) Type Default value

Elvis.Toolbar Boolean true

Elvis.Statusbar Boolean true

Elvis.Font Font fixed

Elvis.Geometry Geometry 80x34

Elvis.Foreground Color black

Elvis.Background Color gray90

Elvis.MultiClickTimeout Timeout 3

Elvis.Control.Font Font variable

Elvis.Cursor.Foreground Color red

Elvis.Cursor.Selected Color red

Elvis.Cursor.BlinkTime Timeout 3

Elvis.Tool.Foreground Color black

Elvis.Tool.Background Color gray75

Elvis.Scrollbar.Foreground Color gray75

Elvis.Scrollbar.Background Color gray60

Elvis.Scrollbar.Width Number 11

Elvis.Scrollbar.Repeat Timeout 4

Elvis.Scrollbar.Position Edge right

† X resources are a way to configure X11 applications based on a set of name/value pairs stored in memory by
the X server. They are not used very much by the current crop of desktop environments, such as KDE and
GNOME. Nonetheless, you can still set them using the xrdb command.

GUI Interfaces | 327

www.it-ebooks.info

http://www.it-ebooks.info/


The “Timeout” type gives a time value, in 10ths of a second. The “Edge” type gives a
scrollbar position, one of left, right, or none.

For example, if your X resource database contains the line elvis.font: 10x20, the de-
fault text font would be 10x20. This value would be used if the normalfont option was
unset.

Extended Regular Expressions
We introduced extended regular expressions earlier in the section “Extended Regular
Expressions” on page 128. The additional metacharacters available in elvis are:

\|
Indicates alternation.

\(...\)
Used for grouping, to allow the application of additional regular expression
operators.

\+
Matches one or more of the preceding regular expressions.

\?
Matches zero or one of the preceding regular expressions.   

\@
Matches the word under the cursor.   

\=
Indicates where to put the cursor when the text is matched. For instance,
hel\=lo would put the cursor on the second l in the next occurrence of hello.

\{...\}
Describes an interval expression, such as x\{1,3\} to match x, xx, or xxx.

POSIX bracket expressions (character classes, etc.) are available.

Improved Editing Facilities
This section describes the features of elvis that make simple text editing easier and
more powerful.

Command-Line History and Completion
Everything you type on the ex command line is saved in a buffer named Elvis ex
history. This is accessible like any other elvis buffer, but it is not directly useful when
just viewed in a window.

328 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


To access the history, you use the arrow keys to display previous commands and to
edit them. Use ↑  and ↓  to page through the list, and ←  and →  to move around on a
command line. You can insert characters by typing, and you can erase them by back-
spacing over them. Much as when editing in a regular vi buffer, the backspace does
remove the characters, but the line is not updated as you type, so be careful!

When entering text into the Elvis ex history buffer (i.e., on the colon command line),
the TAB  key can be used for filename expansion. The preceding word is assumed to
be a partial filename, and elvis searches for all matching files. If there are multiple
matches, it fills in as many characters of the name as possible, and then beeps; or, if no
additional characters are implied by the matching filenames, elvis lists all matching
names and redisplays the command line. If there is a single match, elvis completes the
name and appends a tab character. If there are no matches, elvis simply inserts a tab
character.

To get a real tab character, precede it with a ^V. You can also disable filename com-
pletion entirely by setting the  Elvis ex history buffer’s inputtab option to tab, via the
following command:

:(Elvis ex history)set inputtab=tab

Tag Stacks
Tag stacking is described earlier in the section “Tag Stacks” on page 131. In elvis, tag
stacking is very straightforward, as shown in Tables 17-5 and 17-6.

Table 17-5. elvis tag commands

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags file. The ! forces
elvis to switch to the new file if the current buffer has been modified but
not saved.

stac[k] Display the current tag stack.

po[p][!] Pop a cursor position off the stack, restoring the cursor to its previous
position.

Table 17-6. elvis command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file, and
move to that location. The current location is automatically pushed onto
the tag stack.

^T Return to the previous location in the tag stack, i.e., pop off one element.

Unlike traditional vi, when you type ^], elvis looks up the entire word containing the
cursor, not just the part of the word from the cursor location forward.

Improved Editing Facilities | 329

www.it-ebooks.info

http://www.it-ebooks.info/


In HTML mode (discussed in the later section “Display Modes” on page 337), the
commands all work the same, except that :tag expects to be given a URL instead of a
tag name. URLs don’t depend on having a tags file, so the tags file is ignored when in
HTML mode. elvis supports file:, http:, and ftp: URLs. It can also write via FTP.
Simply give a URL wherever elvis expects a filename. To access your own account on
an FTP site (instead of the anonymous account), the directory name portion of the URL
must begin with /~. elvis will read your ~/.netrc file to find the right name and pass-
word. The html display mode makes good use of these features! (The network functions
work in Windows and OS/2, too.)

Several :set options affect how elvis works with tags, as described in Table 17-7.

Table 17-7. elvis options for tag management

Option Function

taglength, tl Control the number of significant characters in a tag that is to be looked up. The default
value of zero indicates that all characters are significant.

tags, tagpath The value is a list of directories and/or filenames in which to look for tags files. elvis looks
for a file named tags in any entry that is a directory. Entries in the list are colon-separated
(or semicolon-separated on DOS/Windows), in order to allow spaces in directory names.
The default value is just tags, which looks for a file named tags in the current directory.
This can be overridden by setting the TAGPATH environment variable.

tagstack When set to true, elvis stacks each location on the tag stack. Use :set notagstack to
disable tag stacking.

elvis supports the extended tags file format described in Chapter 8. elvis comes with
its own version of ctags (named elvtags, to avoid conflict with the standard version).
It generates the enhanced format described earlier. Here is an example of the spe-
cial !_TAG_ lines it produces:

!_TAG_FILE_FORMAT       2       /supported features/
!_TAG_FILE_SORTED       1       /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR    Steve Kirkendall        /kirkenda@cs.pdx.edu/
!_TAG_PROGRAM_NAME      Elvis Ctags     //
!_TAG_PROGRAM_URL       ftp://ftp.cs.pdx.edu/pub/elvis/README.html  //
!_TAG_PROGRAM_VERSION   2.1     //

In elvis, each window has its own tag stack.

In general, elvis does some innovative things with tags. When reading overloaded tags,
it tries to guess which one you’re looking for and presents the most likely one first. If
you reject it (by hitting ^] again, or typing :tag again), it then presents you with the
next most likely match, and so on. It also notes the attributes of the tags that you reject
or accept and uses those to improve its guessing heuristic for later searches.

The :tag command’s syntax has been extended to allow you to search for tags by
features other than just the tag name. There are too many details to go into here; see
the chapter in the online help that describes the use of tags.

330 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


There is also a :browse command, which finds all matching tags at once and builds an
HTML table from them. From this table, you can follow hypertext links to any matching
tags you want.

Finally, there is the tagprg option, which, if set, discards the built-in tag searching
algorithm and instead runs an external program to perform the search.

Infinite Undo
With elvis, before being able to undo and redo multiple levels of changes,  you must
first set the undolevels option to the number of levels of “undo” that elvis should
allow. A negative value disallows any undoing (which is not terribly useful). The
elvis documentation warns that each level of undo uses around 6K bytes of the session
file (the file that describes your editing session), and thus can eat up disk space rather
quickly. It recommends not setting undolevels any higher than 100 and “probably
much lower.”

Once you’ve set undolevels to a nonzero value, you enter text as normal. Then, each
successive u command undoes one change. To redo (undo the undo), you use the (rather
mnemonic) ^R (Ctrl-R) command.

In elvis, the default value of undolevels is zero, which causes elvis to mimic Unix
vi. The option applies per buffer being edited; see the earlier section “Initialization
Steps” on page 319 for a description of how to set it for every file that you edit.

Once undolevels has been set, adding a count to either the u or ^R commands undoes
or redoes the given number of changes.

Arbitrary Length Lines and Binary Data
elvis can edit files with arbitrary length lines and with an arbitrary number of lines.

Under Unix, elvis does not treat a binary file differently from any other file. On other
systems, it uses the elvis.brf file to set the binary option. This avoids newline trans-
lation issues. You can enter 8-bit text by typing ̂ X followed by two hexadecimal digits.
Using the hex display mode is an excellent way to edit binary files. The elvis.brf file
and the hex display mode are described in the later section “Interesting Features” on
page 335.

Left-Right Scrolling
You enable left-right scrolling in elvis using :set nowrap. The value of sidescroll
controls the number of characters by which elvis shifts the screen when scrolling left
to right. The ^W S command toggles the value of this option.

Improved Editing Facilities | 331

www.it-ebooks.info

http://www.it-ebooks.info/


Visual Mode
elvis allows you to select regions one character at a time, one line at a time, or rectan-
gularly, using the commands shown in Table 17-8.

Table 17-8. elvis block mode command characters

Command Function

v Start region selection, character-at-a-time mode.

V Start region selection, line-at-a-time mode.

^V Start region selection, rectangular mode.

elvis highlights the text (using reverse video) as you are selecting it. To make your
selection, simply use the normal motion keys. The screen here shows a rectangular
region:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the book into the late 1990&rsquo;s.
In particular, besides the &ldquo;original&rdquo; version of
<command>vi</command> that comes as a standard part of every Unix
system, there are now a number of freely available &ldquo;clones&rdquo;
or work-alike editors.

elvis permits only a few operations on selected areas of text. Some operations work
only on whole lines, even if you’ve selected a region that does not contain whole lines
(see Table 17-9).

Table 17-9. elvis block mode operations

Command Operation

c, d, y Change, delete, or yank text. Only d works exactly on rectangles.

<, >, ! Shift text left or right, and filter text. These operate on the whole lines containing the marked
region.

After using the d command to delete the region, the screen now looks like this:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings the 90&rsquo;s.
In particulo;original&rdquo; version of
<command>vi as a standard part of every
system, there are n available &ldquo;clones&rdquo;
or work-alike editors.

Programming Assistance
elvis’s programming assistance capabilities are described in this section.

332 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Edit-Compile Speedup
elvis provides commands that make it easier to stay within the editor while working
on a program. You can recompile a single file, rebuild your entire program, and work
through compiler errors one at a time. The elvis commands are summarized in Ta-
ble 17-10.

Table 17-10. elvis program development commands

Command Option Function

cc[!] [args] ccprg Run the C compiler. Useful for recompiling an individual file.

mak[e][!] [args] makeprg Recompile everything that needs recompiling (usually via make).

er[rlist][!] [file]  Move to the next error’s location.

The cc command recompiles an individual source file. You run it from the colon com-
mand line. For example, if you are editing the file hello.c and you type :cc, elvis will
compile hello.c for you.

If you supply additional arguments to the :cc command, those arguments will be passed
on to the C compiler. In this case, you need to supply all the arguments, including the
filename.

The :cc command works by executing the text of the ccprg option. The default value
is "cc ($1?$1:$2)". elvis sets $2 to the name of the current source file, and $1 to the
arguments you give to the :cc command. The value of ccprg thus uses your arguments
if they are present; otherwise, it just passes the current file’s name to the system cc
command. (You can, of course, change ccprg to suit your taste.)

Similarly, the :make command is intended to recompile everything that needs recompil-
ing. It does this by executing the contents of the makeprg option, which by default is
"make $1". Thus, you could type :make hello to make just the hello program, or
just :make to make everything.

elvis captures the output of the compile or make and looks for things that look like
filenames and line numbers. When it finds likely candidates, it treats them as such and
moves to the location of the first error. The :errlist command moves to each successive
error location in turn. elvis displays the error message text in the status line as you
move to each location.

If you supply a filename argument to :errlist, elvis will load a fresh batch of error
messages from that file, and move to the location of the first error.

The vi mode command * (asterisk) is equivalent to :errlist. This is more convenient
to use when you have a lot of errors to step through.

Finally, one really nice feature is that elvis compensates for changes in the file. As you
add or delete lines, elvis keeps track, so that when you go to the next error, you end

Programming Assistance | 333

www.it-ebooks.info

http://www.it-ebooks.info/


up on the correct line—which is not necessarily the one with the same absolute line
number as in the compiler’s error message.

Syntax Highlighting
To cause elvis to do syntax highlighting, use the :display syntax command. This is a
per-window command. (The other elvis display modes are described in “Display
Modes” on page 337.)

You specify the appearance of text directly, using the :color command. You first give
the type of text to highlight. For example, in the syntax display mode, some of the
possibilities are:

comment
How to display comments

function
How to display identifiers that are function names

keyword
How to display identifiers that are keywords

prep
How to display C and C++ preprocessor directives

string
How to display string constants (such as "Don't panic!" in awk)

variable
How to display for variables, fields, and so on

other
How to display things that don’t fall into the other categories but that should not
be displayed in the normal font (e.g., type names defined with the C typedef
keyword)

Next, you indicate the font face, one of normal, bold, italic, underlined, emphasized,
boxed, graphic, proportional, or fixed. (These can be abbreviated to a single letter.)
You can then follow the face with a color. For example:

:color function bold yellow

The description of each language’s comments, functions, keywords, etc., is stored in
the elvis.syn file. This file comes with a number of specifications in it already. As an
example, here is the syntax specification for awk:

# Awk.  This is actually for Thompson Automation's AWK compiler, which is
# somewhat beefier than the standard AWK interpreter.
language tawk awk
extension .awk
keyword BEGIN BEGINFILE END ENDFILE INIT break continue do else for function
keyword global if in local next return while
comment #

334 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


function (
string "
regexp /
useregexp (,~
other allcaps

The format is mostly self-explanatory and is fully documented in the elvis online
documentation.

The reason elvis associates fonts and colors with different parts of a file’s syntax is its
ability to print files as they’re shown on the screen (see the discussion of the :lpr com-
mand in the later section “Display Modes” on page 337).

On a nonbitmapped display, such as the Linux console, all of the fonts map into the
one used by the console driver. This makes it rather difficult to distinguish normal from
italic, for example. However, on some displays (such as the Linux console), elvis
compensates by changing the color of the different fonts. If you have a GNU/Linux
system with elvis, use it to edit a convenient C source file and you will see different
parts of the code in different colors. The effect is rather pleasant; we regret that we can’t
reproduce it here in print.

In elvis, the syntax colors are per-window attributes. You can change the color for the
italic font in one window, and it will not affect the color for the italic font in another
window. This is true even if both windows are showing the same file.

Syntax coloring makes program editing much more interesting and lively. But you have
to be careful in your choice of colors!

Interesting Features
elvis has a number of interesting features:

Internationalization support
Like nvi, elvis also has a home-grown method for allowing translations of mes-
sages into different languages. The elvis.msg file is searched for along the elvis
path and loaded into a buffer named Elvis messages.

Messages have the form “terse message:long message.” Before printing a message,
elvis looks up the terse form, and if there is a corresponding long form, that mes-
sage is used. Otherwise, the terse message is used.

Display modes
This is perhaps the most interesting of elvis’s features. For certain kinds of files,
elvis formats the file content on the screen, giving a surprisingly good approxi-
mation of a WYSIWYG effect. elvis can also use the same formatting for printing
the buffer to several kinds of printers. Display modes get their own subsection later
in this chapter.

Interesting Features | 335

www.it-ebooks.info

http://www.it-ebooks.info/


Pre- and post-operation command files
elvis loads four files (if they exist) that allow you to customize its behavior before
and after reading and writing a file. This feature also gets its own subsection, later.

Open mode
elvis is the only one of the clones that actually implements vi’s open mode. (Think
of open mode as like vi, but with only a one-line window. The “advantage” of open
mode is that it can be used on terminals that don’t have cursor motion capabilities.)

Security
The :safely command sets the security option for execution of non-home-
directory .exrc files, or any other untrusted files. When security=safer is set,
“certain commands are disabled, wildcard expansion in filenames is disabled, and
certain options are locked (including the security option itself).” The elvis
documentation provides the details; however, don’t blindly trust elvis to provide
complete security for you.

Built-in calculator
elvis extends the ex command language with a built-in calculator (sometimes re-
ferred to as an expression evaluator in the documentation). It understands C ex-
pression syntax, and is most used in the :if, :calc, and :eval commands. See the
online help for details, as well as examples in the elvis distribution’s sample
initialization files.

Macro debugger
elvis has a debugger for vi macros (the :map command). This can be useful when
writing complicated input or command maps.

Macros for ex mode
The :alias command provides for defining ex macros. It is intended to resemble
the alias command in csh. For example, there is a :safer alias for the :safely
command, which provides backward compatibility with earlier versions of elvis.

Smarter % command
The visual % command has been extended to recognize #if, #else, and #endif di-
rectives if you’re using the syntax display mode.

Built-in spellchecker
In syntax display mode, the spellchecker is smart enough to check the tags file for
program symbols and a natural-language dictionary for comments. See :help set
spell.

Text folding
Text folding allows you to hide and reveal certain parts of a file, which is useful for
working with structured text. See :help :fold.

Highlighting selected lines
Steve tells us: “elvis can add a highlight to selected lines. See :help :region. For
example, the commands :load since and then :rcssince will highlight lines that
have been changed since the last time the file was checked into RCS.”

336 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Display Modes
elvis has several display modes. Depending on the kind of file, elvis produces a for-
matted version of the file, producing a WYSIWYG effect. The display modes are
outlined in Table 17-11.

Table 17-11. elvis display modes

Mode Display appearance

normal No formatting; displays your text as it exists in the file.

syntax Like normal, but with syntax coloring turned on.

hex An interactive hex dump, reminiscent of mainframe hex dumps. Good for editing binary files.

html A simple web page formatter. The tag commands can be used to follow links and return to the
original starting point.

man Simple manpage formatter. Like the output of nroff -man.

tex A simple subset of the TeX formatter. 

The :normal command will switch the display from one of the formatted views to
normal mode. Use :display mode to switch back. As a shortcut, the ^W d command will
toggle the display modes for the window.

Of the available modes, html and man are the most WYSIWYG in nature. The online
documentation clearly defines the subset of both markup languages that elvis
understands.

elvis uses the html mode for displaying its online help, which is written in HTML and
has many cross-referencing links within it.

The example here shows elvis editing one of the HTML help files. The screen is split.
Both windows show the same buffer; the bottom window is using the html display
mode, whereas the top is using the normal display mode:

<html><head>
<title>Elvis 2.0 Sessions</title>
</head><body>

<h1>10. SESSIONS, INITIALIZATION, AND RECOVERY</h1>

This section of the manual describes the life-cycle of an
edit session. We begin with the definition of an
<a href="#SESSION">edit session</a> and
what that means to elvis.
This is followed by sections discussing
<a href="#INIT">initialization</a>
and <a href="#RECOVER">recovery after a crash.</a>
_____________________________________________________________________

10.0 SESSIONS, INITIALIZATION, AND RECOVERY

Interesting Features | 337

www.it-ebooks.info

http://www.it-ebooks.info/


        This section of the manual describes the life-cycle of an
        edit session. We begin with the definition of an edit
        session and what that means to elvis. This is
        followed by sections discussing initialization and 
        recovery after a crash.

    10.1 Sessions

The man mode is also interesting, since normally you have to format and print a manpage
to be sure you’ve done a decent job of laying it out. The following quote from the online
help seems appropriate:

Troff source was never designed to be interactively edited, and although I did the best I
could, attempting to edit in man mode is still a disorienting experience. I suggest you get
in the habit of using normal mode when making changes, and man mode to preview the
effect of those changes. The ^W d command makes switching between modes a pretty
easy thing to do.

As an interesting adjunct, both the html and man modes also work with the :color
command described later in “Syntax Highlighting” on page 334. This is particularly
nice with man mode. For example, by default on a Linux console, only bold text (.B) is
distinguishable from normal text. But with syntax coloring on, both bold and italic
(.I) text become distinct. The mode commands are summarized in Table 17-12.   

Table 17-12. elvis display mode commands

Command Function

di[splay] [mode [lang]] Change the display mode to mode. Use lang for syntax mode.

no[rmal] Same as :display normal, but much easier to type.

Associated with each window is the bufdisplay option, which should be set to one of
the supported display modes.  The standard elvis.arf file (see the next subsection)
will look at the extension of the buffer’s filename and attempt to set the display to a
more interesting mode than normal.

Finally, elvis can also apply its WYSIWYG formatting to printing the contents of a
buffer. The :lpr command formats a line range (or the whole buffer, by default) for
printing. You can print to a file or down a pipe to a command. By default, elvis prints
to a pipe that executes the system print spooling command.

The :lpr command is controlled by several options, described in Table 17-13.

Table 17-13. elvis options for print management

Option Function

lptype, lp The printer type. 

lpconvert, lpcvt If set, convert Latin-8 extended ASCII to PC-8 extended ASCII. 

lpcrlf, lpc The printer needs CR/LF to end each line. 

lpout, lpo The file or command to print to. 

338 | Chapter 17: Elvis

www.it-ebooks.info

http://www.it-ebooks.info/


Option Function

lpcolumns, lpcols The printer’s width. 

lpwrap, lpw Simulate line wrapping. 

lplines, lprows The length of the printer’s page.  

lpformfeed, lpff Send a form feed after the last page. 

lpoptions, lpopt Control of various printer features. This matters only for PostScript print-
ers.

lpcolor, lpcl Enables color printing for PostScript and MS Windows printers. 

lpcontrast, lpct Controls shading and contrast; for use with the lpcolor option. 

Most of the options are self-explanatory. elvis supports several printer types, as de-
scribed in Table 17-14.

Table 17-14. Values for the lptype option

Name Printer Type

ps PostScript, one logical page per sheet of paper.

ps2 PostScript, two logical pages per sheet of paper.

epson Most dot-matrix printers; no graphic characters supported.

pana Panasonic dot-matrix printers. 

ibm Dot-matrix printers with IBM graphic characters.

hp Hewlett-Packard printers, and most non-PostScript laser printers.

cr Line printers; overtyping is done with carriage return.

bs Overtyping is done via backspace characters. This setting is the closest to
traditional Unix nroff.

dumb Plain ASCII, no font control.

If you have a PostScript printer, by all means use an lptype of ps or ps2. Use the latter
to save paper, which is particularly handy when printing drafts.       

Pre- and Post-Operation Control Files
elvis gives you the ability to control its actions at four points when reading and writing
files: before and after reading a file, and before and after writing a file. It does this by
executing the contents of four ex scripts at those respective points. These scripts are
searched for using the directories listed in the elvispath option:

elvis.brf
This file is executed Before Reading a File (.brf). The default version looks at the
file’s extension and attempts to guess whether the file is binary. If it is, the
binary option is turned on, to prevent elvis from converting newlines (which may
be actual CR/LF pairs in the file) into line feeds internally.

Interesting Features | 339

www.it-ebooks.info

http://www.it-ebooks.info/


elvis.arf
This file is executed After Reading a File (.arf). The default version examines the
file’s extension in order to turn on syntax highlighting.

elvis.bwf
This file is executed Before Writing a File (.bwf), in particular, before completely
replacing an original file with the contents of the buffer. The default version im-
plements copying the original file to a file with a .bak extension. You must set the
backup option for this to work.

elvis.awf
This file is executed After Writing a File (.awf). There is no default file for this,
although it might be a good place to add hooks into a source code control system.

The use of command files to control these actions is quite powerful. It allows you to
easily tailor elvis’s behavior to suit your needs; in other editors these kinds of features
are much more hardwired into the code.

In addition, elvis supports Vim-style autocommands with :autocmd. See the online
help for details.

elvis Futures
Steve Kirkendall informs us that there are a few things he has implemented but not yet
released, as described in the following list:

• An interface to the GDB (GNU debugger) for use in software development

• A persistence feature similar to Vim’s viminfo file

• The ability to embed one syntax within another, such as JavaScript embedded in
HTML

Sources and Supported Operating Systems
The official WWW location for elvis is ftp://ftp.cs.pdx.edu/pub/elvis/README.html.
From there, you can download the elvis distribution or get it directly, using ftp from
ftp://ftp.cs.pdx.edu/pub/elvis/elvis-2.2_0.tar.gz.

The source code for elvis is freely distributable. elvis is distributed under the terms
of perl’s Artistic License. The licensing terms are described in the doc/license.html file
in the distribution.

elvis works under Unix, OS/2, MS-DOS, and modern versions of MS Windows. The
Unix and Windows ports provide a graphical user interface. The MS-DOS version in-
cludes mouse support.

340 | Chapter 17: Elvis

www.it-ebooks.info

ftp://ftp.cs.pdx.edu/pub/elvis/README.html
ftp://ftp.cs.pdx.edu/pub/elvis/elvis-2.2_0.tar.gz
http://www.it-ebooks.info/


Compiling elvis is straightforward. Retrieve the distribution via ftp or via a web
browser. Uncompress and untar it,‡ run the configure program, and then run make:

$ gzip -d < elvis-2.2_0.tar.gz | tar -xvpf -
...
$ cd elvis-2.2_0; ./configure
...
$ make
...

elvis should configure and build with no problems. Use make install to install it.

The default configuration causes elvis to install itself in standard system
directories, such as /usr/bin, /usr/share, and so on. If you wish to have
things installed in /usr/local, use the --prefix option to the
configure script.

Should you need to report a bug or problem in elvis, the person to contact is Steve
Kirkendall at kirkenda@cs.pdx.edu.

‡ The untar.c program available from the elvis ftp site is a very portable, simple program for unpacking gziped
tar files on non-Unix systems.

Sources and Supported Operating Systems | 341

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


CHAPTER 18

vile: vi Like Emacs

vile stands for “vi Like Emacs.” It started out as a copy of version 3.9 of MicroEMACS
that was modified to have the “finger-feel” of vi. Thomas Dickey and Paul Fox are the
maintainers.   Over the years (since 1990), there have been other contributors, including
Kevin Buettner and Clark Morgan.  

The current version is 9.6, released late in 2007. The screenshots in this chapter were
made with 9.5s (a pre-release beta). Until the late 1990s, version numbers advanced
roughly one per year; starting with 1999, the scheme is about 0.1 per year—and some-
day will reach 10.

This chapter was written using vile. 

Authors and History
Paul Fox describes the early vile history this way:

vile’s design goal has always been a little different than that of the other clones. vile has
never really attempted to be a “clone” at all, though most people find it close enough. I
started it because in 1990 I wanted to be able to edit multiple files in multiple windows,
I had been using vi for 10 years already, and the sources to MicroEMACS came floating
past my newsreader at a job where I had too much time on my hands. I started by changing
the existing keymaps in the obvious way, and ran full-tilt into the “Hey! Where’s ‘insert’
mode?” problem. So I hacked a little more, and hacked a little more, and eventually
released in ’91 or ’92. (Starting soon thereafter, major version numbers tracked the year
of release: 7.3 was the third release in ’97.)

But my goal has always been to preserve finger-feel (as opposed to the display visuals),
and, selfishly, to preserve finger-feel most for the commands I use. ☺ vile has quite an
amazing ex mode, that works very well—it just looks really odd, and a couple of com-
mands that are beyond the scope of the current parser are missing. For the same reasons,
vile also won’t fully parse existing .exrc files, since I don’t really think that’s so important
—it does simple ones, but more sophisticated ones need some tweaking. But when you
toss in vile’s built-in command/macro language, you quickly forget you ever cared
about .exrc.

343

www.it-ebooks.info

http://www.it-ebooks.info/


Thomas Dickey started working on vile in December of 1992, initially just contributing
patches, and later doing more significant features and extensions, such as line num-
bering, name completion, and animating the buffer list window. He explains: “Inte-
grating features together is more important to my design goals than implementing a
large number of features.”

In February of 1994, Kevin Buettner started working on vile. Initially, he supplied bug
fixes for the X11 version, xvile, and then improvements, such as scrollbars. This
evolved into support for the Motif, OpenLook, and Athena widget sets. Because the
Athena widgets were, surprisingly, not “universally available in a bug-free form,” he
wrote a version that used the raw Xt toolkit. This version ended up providing superior
functionality to the Athena version. Kevin also contributed the initial support in vile
for GNU Autoconf.

The Win32 GUI port, called winvile, started in 1997, and continued on with exten-
sions, including an OLE server and a Visual Studio add-in.

In the current version of vile, the perl interface and major modes (discussed later) are
stable. They are used as a basis for other features, such as a server (using the perl
interface) and syntax highlighting based on the major modes. For the near term, future
work will focus on improving the locale support.

Important Command-Line Arguments
Although vile does not expect to be invoked as either vi or ex, it can be invoked as
view, in which case it will treat each file as read-only. Unlike the other clones, it does
not have a line-editor mode.

Here are the important vile command-line arguments:

-c command, + command
vile will execute the given ex-style command.  Any number of -c options may be
given.

-h
Invokes vile on the help file. 

-R
Invokes vile in “read-only” mode; no writes are  permitted while in this mode.
(This will also be true if vile is invoked as view, or if readonly mode is set in the
startup file.)

-t tag
Start editing at the specified tag.  The -T option is equivalent and can be used when
X11 option parsing eats the -t.

-v
Invokes vile in “view” mode; no changes are  permitted to any buffer while in this
mode.

344 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


-?
vile prints a short usage summary and then exits. 

@cmdfile
vile will run the specified file as its startup file, and will bypass any normal startup
file (i.e., .vilerc) or environment variable (i.e., VILEINIT).

A few often-used options are obsolete since vile implements the POSIX -c (or +) option:

-g N
vile will begin editing on the first file at the specified line number. This can also
be given as +N.

-s pattern
In the first file, vile will execute an initial search for the given pattern. This can
also be given as +/pattern.

Online Help and Other Documentation
vile currently comes with a single (rather large) ASCII text file, vile.hlp. The :help
command (which can be abbreviated to :h) opens a new window on that file. You can
then search for information on a particular topic, using standard vi search techniques.
Because it is a flat ASCII file, it is also easy to print out and read through.

In addition to the help file, vile has a number of built-in commands for displaying
information about the facilities and state of the editor. Some of the most useful
commands are:

:show-commands
Creates a new window that shows a complete list of all vile commands, with a
brief description of each one. The information is placed in its own buffer that can
be treated just like any other vile buffer. In particular, it is easy to write it out to
a file for later printing.

:apropos
Shows all commands whose names contain a given substring. This is easier than
just randomly searching through the help file to find information on a particular
topic.

:describe-key
Prompts you for a key or key sequence, and then shows the description of that
command. For instance, the x key implements the delete-next-character function.

:describe-function
Prompts you for a function name, and then shows the description of that function.
For instance, the delete-next-character function deletes a given number of char-
acters to the right of the current cursor position.

Online Help and Other Documentation | 345

www.it-ebooks.info

http://www.it-ebooks.info/


The :apropos, :describe-function, and :describe-key commands all give the descrip-
tive information, plus all other synonyms (since a function may have more than one
name, for convenience), all other keys that are bound to it (since many key sequences
may be bound to the same function), and whether the command is a “motion” or an
“operator.” A good example of this is the output of :describe-function next-line:

"next-line"                     ^J      ^N      j       #-B
  or    "down-arrow"
  or    "down-line"
  or    "forward-line"
  (motion:  move down CNT lines )

This shows all four of its names and its key bindings. (The sequence #-B is vile’s
terminal-independent representation of the up arrow—use :show-key-names for a com-
plete list.)

The VILE_STARTUP_PATH environment variable can be set to a colon-separated search
path for the help file.* The VILE_HELP_FILE environment variable can be used to override
the name of the help file (typically vile.hlp).

The combination of online searchable help, built-in command and key descriptions,
and command completion makes the help facility straightforward to use.

Initialization
xvile performs extra initialization for its menus, before the other steps:

1. (xvile only.) Use the value of the XVILE_MENU environment variable for the name of
the menu description file, if provided. Otherwise, it  uses .vilemenu. This file sets
the default menus for the X11 interface.†

After that, the different versions vile, xvile, and winvile perform the same two-stage
initialization. The first stage uses a mixture of environment variables and files:

2. Execute the file named on the command line with @cmdfile options, if any. Bypass
any other initialization steps that would otherwise be done.

3. If the VILEINIT environment variable exists, execute its value. Otherwise, look for
an initialization file.

4. If the VILE_STARTUP_FILE environment variable exists, use that as the name of the
startup file. If not, on Unix use .vilerc, and on other systems use vile.rc.

5. Look for the startup file in the current directory, and then in the user’s home di-
rectory. Use whichever one is found first.

The second stage uses the initialization commands:

* The Win32 port uses a semicolon as a list-separator; the OpenVMS port uses commas.

† winvile’s menus are not configurable; they provide features that are supported only in Win32.

346 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


6. Load the first file specified on the command line into a memory buffer.

7. Execute the commands given with -c options, applying them by default to the first
file.

Like the other clones, vile lets you place common initialization actions into
your .exrc file (i.e., options and commands for Unix vi and/or the other clones), and
use your .vilerc file to execute :source .exrc before or after the vile-specific
initializations.

Multiwindow Editing
vile is somewhat different from the other clones. It started life as a version of Micro-
EMACS, and then was modified into an editor with the “finger-feel” of vi.

One of the things that versions of Emacs have always done is handle multiple windows
and multiple files; as such, vile was the first vi-like program to provide multiple win-
dows and editing buffers.

As in elvis and Vim, the :split command‡ creates a new window, and then you can
use the ex command :e filename to edit a new file in the new window. After that, things
become different; in particular, the vi command mode keys to switch among windows
are very different.

Figure 18-1 depicts a split screen that results from typing vile ch12.xml§ followed
by :split and :e !zcat chapter.xml.gz.

Like Vim, all windows share the bottom line for execution of ex commands. Each
window has its own status line, with the current window indicated by filling its status
line with equals signs. The status line also acquires an I in the second column when in
insert mode, and [modified] is appended after the filename when the file has been
changed but not yet written out.

vile is also like Emacs in that commands are bound to key sequences. Table 18-1
presents the commands and their key sequences. In some cases, two sets of key se-
quences do the same operation, for example, the delete-other-windows command.

Table 18-1. vile window management commands

Command Key sequence(s) Function

delete-other-windows ^O, ^X 1 Eliminate all windows except the current one.

delete-window ^K, ^X 0 Destroy the current window, unless it is the last one.

‡ That this works is an artifact of vile allowing you to abbreviate commands. The actual command name is 
split-current-window.

§ The alert reader may have noticed that this is not Chapter 12. The chapters were renumbered during the
development of the seventh edition.

Multiwindow Editing | 347

www.it-ebooks.info

http://www.it-ebooks.info/


Command Key sequence(s) Function

edit-file, E, e ^X e Bring given (or under-cursor, for ^X e) file or existing buffer
into window.

find-file ^X e Like edit-file.

grow-window V Increase the size of the current window by count lines.

move-next-window-down ^A ^E Move next window down (or buffer up) by count lines.

move-next-window-up ^A ^Y Move next window up (or buffer down) by count lines.

move-window-left ^X ^L Scroll window to left by count columns, or a half screen if
count is unspecified.

move-window-right ^X ^R Scroll window to right by count columns, or a half screen if
count is unspecified.

next-window ^X o Move to the next window. 

position-window z where Reframe with cursor specified by where, as follows: center
(., M, m), top  ( ENTER , H, t), or bottom (-, L, b).

previous-window ^X O Move to the previous window. 

resize-window  Change the current window to count lines. count is supplied
as a prefix argument.

restore-window  Return to window saved with save-window.

save-window  Mark a window for later return with restore-window.

scroll-next-window-down ^A ^D Move next window down by count half screens. count is sup-
plied as a prefix argument.

Figure 18-1. Editing this chapter in vile

348 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Command Key sequence(s) Function

scroll-next-window-up ^A ^U Move next window up by count half screens. count is supplied
as a prefix argument.

shrink-window v Decrease the size of the current window by count lines.
count is supplied as a prefix argument.

split-current-window ^X 2 Split the window in half; a count of 1 or 2 chooses which
becomes current. count is supplied as a prefix argument.

view-file  Bring given file or existing buffer into window, and mark it
“view-only.”

set-window  Bring existing buffer into window.

historical-buffer _ Display a list of the first nine buffers. A digit moves to the
given buffer; __ moves to the most recently edited file. Tab
(and back-tab) rotate the list, making it simple to navigate in
a list of long buffer names.

toggle-buffer-list * Pop up/down a window showing all the vile buffers.

GUI Interfaces
The screen shots and the explanation in this section were supplied by Kevin Buettner,
Thomas Dickey, and Paul Fox. We thank them.

There are several X11 interfaces for vile, each utilizing a different toolkit based on the
Xt library. There is a plain “No Toolkit” version that does not use a toolkit, but it has
custom scrollbars and a bulletin board widget for geometry management. There are
versions that use the Motif, Athena, or OpenLook toolkits.‖ The Motif and Athena
versions are the best supported, and have menu support.

There is a “single” Win32 GUI—with variations to support OLE and Unicode. On the
surface, they look the same.

Fortunately, the basic interface is the same for all versions. There is a single top-level
window that can be split into two or more panes. The panes, in turn, may be used to
display multiple views of a buffer, multiple buffers, or a mixture of both. In vile par-
lance these panes are called “windows,” but to avoid confusion, we will continue to
call them “panes” in the following discussion.

Building xvile
Although there are binary packages for xvile, you may wish to compile it on a platform
with no package support.

‖ Sun Microsystems dropped support for OpenLook before releasing Solaris 9 in 2002.

GUI Interfaces | 349

www.it-ebooks.info

http://www.it-ebooks.info/


When building xvile, you have to choose which toolkit version to use. This is done
when you configure vile with the configure command.# The relevant options are: 

--with-screen=value
Specify terminal driver. The default is tcap, for the termcap/terminfo driver. Other
values include curses, ncurses, ncursesw, X11, OpenLook, Motif, Athena, Xaw, Xaw3d,
neXtaw, and ansi.

--with-x
Use the X Window System. This is the “No Toolkit” version.

--with-Xaw-scrollbars
Use Xaw scrollbars rather than the vile custom scrollbars.

--with-drag-extension
Use the drag/scrolling extension with Xaw.

xvile Basic Appearance and Functionality
The following figures show xvile’s Motif interface. It is similar to the Athena interface.

Figure 18-2 shows three panes:

1. The manpage for vile, which shows the use of underlining and boldface.

2. A buffer misc.c, from tin, which shows syntax highlighting (this time with colors—
grayscaled for printing—for preprocessor statements, comments, and keywords).

3. A three-line pane, which is active (noted by a darker status line), named
[Completions], for filename completions. The pane is coordinated with the mini-
buffer (the colon command line): the first line reads  Completions prefixed
by /usr/build/in/tin-1.9.2+/src/m:, and the minibuffer reads Find file: m. The
rest of the pane contains the actual filenames that match. The first line of
[Completions] and the contents change as the user completes the filename (and
presses TAB  to tell vile to show the reduced set of choices).

Figure 18-3 also shows three panes:

1. The [Help] pane, which of course shows the most important feature of an editor
(how to exit without modifying your files). ☺

2. The [Buffer List], which indicates that charset.c is the # (previous) buffer. The
% (current) buffer is not shown on the list, since only the “visible” buffers are dis-
played in this copy of [Buffer List]. Supplying an argument to the * command
would have shown the invisible buffers as well. Buffers 0 and 2 are charset.c and
misc.c. They have been loaded, so their sizes (12425 and 89340) are displayed in
the [Buffer List]. Buffer 1 (<vile.1>) holds a formatted manpage generated by a

# The configure script should work for any Unix (or similar) platform. For building on OpenVMS, use the
vmsbuild.com script. Build instructions are in comments at the top of the script.

350 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


macro and does not correspond to a file.* Buffer 3 (color.c) has not been loaded,
so a u is displayed in the first column, and the size is shown as zero.

3. The [Completions] buffer is active. This time it displays tag completions for the
partial match co, and the Completions prefixed message is not shown because the
buffer is scrolled down, which is another side effect of pressing TAB : vile cycles
through a scrolling action so that all of the choices will be shown, even when the
window is small.†

Generated buffers such as [Help] and [Buffer List] are “scratch” buffers. When pop-
ped down, they are closed, and their content is discarded. There are other buffers, e.g.,
those containing scripts, which are “invisible.” Both are normally not shown in [Buffer
List].

Figure 18-2. The xvile GUI window

* The angle-brackets in the name <vile.1> are a convention to avoid naming conflicts, since two buffers are
not allowed to have the same name.

† The [Completions] buffer is automatically sized, showing no more lines than necessary. If it is too large for
the available space, vile borrows up to ¾ of the space from an adjacent pane.

GUI Interfaces | 351

www.it-ebooks.info

http://www.it-ebooks.info/


Scrollbars

At the right of each pane is a scrollbar that may be used in the customary fashion to
move about in the buffer. Note, however, that the customary fashion varies from toolkit
to toolkit. In the Athena and “No Toolkit” versions, the middle mouse button may be
used to drag the “thumb” or visible indicator around. The left and right mouse buttons
move down or up (respectively) in the buffer. The amount moved depends on the
location of the mouse cursor on the scrollbar. Placing it near the top will scroll by as
little as one line. When placed near the bottom, the text will scroll by as much as a full
pane.

The Motif scrollbar is probably more familiar. The leftmost mouse button is used for
all operations. Clicking on the little arrows will move up or down by one line. The
scrollbar indicator may be dragged in order to move about, and scrolling up or down
by an entire pane can be accomplished by clicking above or below the indicator.

In each version, there is a small handle above or below (i.e., between) scrollbars that
may be used to adjust the size of two adjacent panes. In the “No Toolkit” version of

Figure 18-3. Buffers and completions in vile

352 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


xvile, the pane resize handle blends in with the status line of two adjacent panes. In
the other versions, the resize handle is more distinguishable. But in each case, the mouse
cursor will change to a heavy vertical double arrow when placed above the resize handle.
The windows may be resized by clicking on and dragging the handle.

A pane can be split into two by holding the Ctrl key down and clicking the left mouse
button on a scrollbar. Then you will have two views of a particular buffer. Other
vile commands may be used to replace one of the views with another buffer if desired.
A pane may be deleted by holding the Ctrl key down and clicking the middle mouse
button. Sometimes after creating a lot of panes, you find yourself wanting to use all of
the window real estate for just one pane. To do this, Ctrl-click the right mouse button;
all other panes will be removed, leaving the entire xvile window containing only the
pane on which you clicked. These actions are summarized in Table 18-2.

Table 18-2. vile pane management commands

Command Function

Ctrl-left button On a scrollbar, split the pane.

Ctrl-middle button Delete a pane.

Ctrl-right button Make the clicked pane the only pane.

Setting the cursor position and mouse motions

Within the text area of a pane, the cursor may be set by clicking the left mouse button.
This not only sets the cursor position, but also sets the pane in which editing is being
done. To set just the pane but preserve the old position, click on the status line below
the text you wish to edit.

A mouse click is viewed as a motion, just like 4j is considered a motion. To delete five
lines, you could enter d4j, which will delete the current line and the four below it. You
can do the same thing with a mouse click. Position your cursor at the place you want
to start deleting from and then press d. After this, click in the buffer at the point to
which you wish to delete. Mouse clicks are real motions and may be used with other
operators as well.

Selections

Selections may be made by holding the left mouse button down and dragging with the
mouse. This is called the PRIMARY selection. Release of the mouse button causes the
selection to be yanked and made available (if desired) for pasting. You can force the
selected region to be rectangular by holding the Ctrl key down while dragging with the
left button depressed. If the dragging motion goes out of the current window, text will
be scrolled in the appropriate direction, if possible, to accommodate selections larger
than the window. The speed at which the scrolling occurs will increase with the passage
of time, making it practical to select large regions of text quickly.

GUI Interfaces | 353

www.it-ebooks.info

http://www.it-ebooks.info/


Individual words or lines may be selected by double- or triple-clicking on them.

A selection may be extended by clicking the right mouse button. As with the left button,
the selection can be adjusted or scrolled by holding the right button down and dragging
with it. Selections may be extended in any window open to the same buffer as the one
in which the selection was started. That is, if you have two views of a buffer (in two
different panes), one containing the start of the buffer and the other the end, it is pos-
sible to select the entire buffer by clicking the left button at the beginning of the pane
that shows the beginning of the buffer and then clicking the right button in the pane
that shows the end of the buffer. Also, selections may be extended in a rectangular
fashion by holding the Ctrl key down in conjunction with the right mouse button.

The middle button is used for pasting the selection. By default, it pastes at the last text
cursor position. If the Shift key is held down while clicking the middle button, the paste
occurs at the position of the mouse cursor.

A selection may be cleared (if owned by xvile) by double-clicking on one of the status
lines.

Clipboard

Data may be exchanged between many X applications via the PRIMARY selection. This
selection is set and manipulated as described previously.

Other applications use the CLIPBOARD selection to exchange data between applica-
tions. On many Sun keyboards, selected text is moved to the clipboard by pressing the
COPY  key and pasted by pressing the PASTE  key. If you find that you cannot paste
text selected in xvile into other applications (or vice versa), it may well be that these
applications use the CLIPBOARD selection instead of the PRIMARY selection. (The
other mechanism used among really old applications involves the use of a ring of cut
buffers.)

xvile provides two commands for manipulating the clipboard: copy-to-clipboard and
paste-from-clipboard. When copy-to-clipboard is executed, the contents of the cur-
rent selection are copied to the special clipboard kill register (denoted by ; in the register
list). When an application requests the clipboard selection, xvile gives it the contents
of this kill register. The paste-from-clipboard command requests clipboard data from
the current owner of the CLIPBOARD selection.

Users of Sun systems may want to put the following key bindings in their .vilerc file
in order to make use of the COPY  and PASTE  keys found on their keyboards:

bind-key copy-to-clipboard #-^
bind-key paste-from-clipboard #-*

Key bindings are described in detail later in this chapter.

354 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Resources

xvile has many resources that can be used to control appearance and behavior. Font
choice is particularly important if you want italic or oblique fonts to be displayed
properly. vile’s documentation has a complete list of resources, as well a sample set
of .Xdefault entries.

Adding menus

The Motif and Athena versions have menu support. Menu items, which are user-
definable, are read from the .vilemenu file, in the current or home directory.

xvile allows three types of menu items:

• Built-in, i.e., specific to the menuing system, such as rereading the .vilerc file or
spawning a new copy of xvile

• Direct invocation of built-in commands (e.g., displaying the [Buffer List])

• Invocation of arbitrary command strings (e.g., running interactive macros, such as
a search command)

We make a distinction between the last two because the authors prefer making vile
able to check the validity of commands before they are executed.

Building winvile
Binaries are available for each release of winvile, but you may wish to compile one of
the interim patch versions. The sources provide makefiles for the Microsoft
(makefile.wnt) and Borland (makefile.tbc) compilers. The former has more features,
providing options for building with OLE, perl, and built-in syntax highlighting. The
Win32 GUI can be built with either compiler environment.

winvile Basic Appearance and Functionality
Figures 18-4 and 18-5 show winvile’s Win32 GUI interface. On the surface, it is much
like the “No Toolkit” X11 interface, having scrollbars. Underneath the surface—which
is easily accessed—it is more elaborate than the Motif interface.

Figure 18-4 shows a view of winvile editing Unicode data:

• The font dialog is initially set to the fixed-pitch system font. Like xvile, the font
can be set when winvile is started, or via a script. It can also be set via an OLE
server. Finally, as shown here, it can use the Win32 common controls.

• The data is Unicode UTF-16, with no byte order mark. It is underlined, since the
highlighting palette used underlining and cyan for coloring quoted strings.

• The default system font cannot display the characters in the file. winvile sees that
the font is small, and displays the Unicode data in hexadecimal form.

GUI Interfaces | 355

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 18-5 shows the result of selecting a more capable font. If you select the system
font again, winvile will show the hexadecimal values again. If you prefer to see the wide
characters as hexadecimal all the time, vile has an option setting for this purpose.

Figure 18-6 shows some of the winvile menu functions, which include:

• winvile extends the system menu, which is accessed by right-clicking on the title
bar of the window.

It also has the same selections on a right-click pop-up menu, eliminating the need
to go up to the title bar. That is enabled by the “Menu” entry at the bottom.

• The menus provide the open, save, print, and font operations typical of GUI ap-
plications. You can also set winvile’s current working directory with the CD entry.

The corresponding dialogs are also accessible from the Win32 console version,
though without a menu.

• winvile also allows you to browse the Windows Favorites folder.

• The recent files (and recent folders) entries select from a user-configurable number
of “recent” files (or folders). winvile saves the names in the user’s registry data,
making them available for each instance of winvile that might be running.

Figure 18-4. winvile with non-Unicode font

356 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Extended Regular Expressions
We introduced extended regular expressions earlier in the section “Extended Regular
Expressions” on page 128. vile provides essentially the same facilities as nvi’s
extended option. This includes the POSIX bracket expressions for character classes,
[[:alnum::]], with some extensions (additional classes and abbreviations), and interval
expressions, such as {,10}. The syntax is somewhat different from nvi, relying on ad-
ditional backslash-escaped characters:

\|
Indicates alternation: house\|home.    

\+
Matches one or more of the preceding regular expression.   

\?
Matches zero or one of the preceding regular expression.   

\(...\)
Provides grouping for *, \+, and \?, as well as making matched subtexts available
in the replacement part of a substitute command (\1, \2, etc.).

\s, \S
Match whitespace and nonwhitespace characters, respectively.  

Figure 18-5. winvile with Unicode font

Extended Regular Expressions | 357

www.it-ebooks.info

http://www.it-ebooks.info/


\w, \W
Match “word-constituent” characters (alphanumerics and the underscore, “_”)
and non-word-constituent characters, respectively. For example, \w\+ would
match C/C++ identifiers and keywords.‡

\d, \D
Match digits and nondigits, respectively.  

\p, \P
Match printable and nonprintable characters, respectively. Whitespace is consid-
ered to be printable.

vile allows the escape sequences \b, \f, \r, \t, and \n to appear in the replacement
part of a substitute command. They stand for backspace, form feed, carriage return,
tab, and newline, respectively. Also, from the vile documentation:

Note that vile mimics perl’s handling of \u\L\1\E instead of vi’s. Given :s/\(abc\)/\u
\L\1\E/, vi will replace with abc whereas vile and perl will replace with Abc. This is
somewhat more useful for capitalizing words.     

Figure 18-6. The winvile recent files menu

‡ For the pedantic among you, it also matches identifiers that start with a leading digit; usually this isn’t much
of a problem.

358 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Improved Editing Facilities
This section describes the features of vile that make simple text editing easier and more
powerful.

Command-Line History and Completion
vile records your ex commands in a buffer named [History]. This feature is controlled
with the history option, which is true by default. Turning it off disables the history
feature and removes the [History] buffer. The command show-history splits the screen
and displays the [History] buffer in a new window.

The colon command line is really a minibuffer. You can use it to recall lines from the
[History] buffer and edit them.

You use the ↑  and ↓  keys to scroll backward and forward in the history, and ←  and
→  to move around within the line. Your current delete character (usually BACK-
SPACE ) can be used to delete characters. Any other characters you type will be inserted
at the current cursor position.

You can toggle the minibuffer into vi mode by typing the mini-edit character (by de-
fault, ^G). When you do this, vile will highlight the minibuffer using the mechanism
specified by the mini-hilite option. The default is reverse, for reverse video. In vi
mode, you can use vi-style commands for positioning. You can also use other vile
commands that are appropriate to editing within a single line, such as i, I, a, and A.
vile decides which commands to accept based on its command tables, which allows
your key bindings to work in the minibuffer, too.

An interesting feature is that vile will use the history to show you previous data that
corresponds to the command you’re entering. For instance, after typing :set followed
by a space, vile will prompt you with Global value:. At that point, you can use ↑  to
see previous global variables that you have set, should you wish to change one of them.

The ex command line provides completion of various sorts. As you type the name of a
command, you can hit the TAB  key at any point. vile fills out the rest of the command
name as much as possible. If you type a TAB  a second time, vile creates a new window
that shows you all the possible completions.

Completion applies to built-in and user-defined vile commands, tags, filenames,
modes (described later in this chapter), variables, enumerated values (such as color
names), and to the terminal characters (the character settings such as backspace, sus-
pend, and so on, derived from your stty settings).

As a side note, this leads to an interesting phenomenon. In vi-style editors, commands
may have long names, but they tend to be unique in the first few characters, since
abbreviations are accepted. In Emacs-style editors, command names often are not

Improved Editing Facilities | 359

www.it-ebooks.info

http://www.it-ebooks.info/


unique in the first several characters, but command completion still allows you to get
away with less typing.

Tag Stacks
Tag stacking is described earlier in the section “Tag Stacks” on page 131. In vile, tag
stacking is available and straightforward. It is somewhat different than the other clones,
most notably in the vi mode commands that are used for tag searching and popping
the tag stack. Table 18-3 shows the vile tag commands.

Table 18-3. vile tag commands

Command Function

next-tag Continues searching through the tags file for more matches.

pop[!] Pops a cursor position off the stack, restoring the cursor to its previous
position.

show-tagstack Creates a new window that displays the tag stack. The display changes as
tags are pushed onto or popped off of the stack.

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags file. The ! forces
vile to switch to the new file if the current buffer has been modified but
not saved.

The vi mode commands are described in Table 18-4.

Table 18-4. vile command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file, and
move to that location. The current location is automatically pushed onto
the tag stack.

^T,    ^X ^] Return to the previous location in the tag stack, i.e., pop off one element.

^A ^] Same as the :next-tag command.

As in the other editors, options control how vile manages the tag-related commands,
as shown in Table 18-5.

Table 18-5. vile options for tag management

Option Function

pin-tagstack Makes tag searches and pop ups not change the current window, thereby
“pinning” it. This option is false by default.

tagignorecase Makes tag searches ignore case. This option is false by default.

taglength Controls the number of significant characters in a tag that is to be looked
up. The default value of zero indicates that all characters are significant.

tagrelative When using a tags file in another directory, filenames in that tags file are
considered to be relative to the directory where the tags file is.

360 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Option Function

tags Can be set to a whitespace-separated list of tags files to use for looking up
tags. vile loads all tags files into separate buffers that are hidden by de-
fault, but that can be edited if you wish. You can place environment var-
iables and shell wildcards into tags.

tagword Uses the whole word under the cursor for the tag lookup, not just the
subword starting at the current cursor position. This option is disabled by
default, which keeps vile compatible with vi.

Infinite Undo
vile is similar in principle but different in practice from the other editors. Like elvis
and Vim, you can set an undo limit, but like nvi, the . command will do the next undo
or redo as appropriate. Separate vi mode commands implement successive undo and
redo.

vile uses the undolimit option to control how many changes it will store. The default
is 10, meaning that you can undo up to the 10 most recent changes. Setting it to zero
allows true “infinite undo,” but this may consume a lot of memory.

To start an undo, first use either the u or ^X u commands. Then, each successive .
command will do another undo. Like vi, two u commands just toggle the state of the
change; however, each ^X u command does another undo.

The ^X r command does a redo. Typing . after the first ^X r will do successive redos.
You can provide a count to the ^X u and ^X r commands, in which case vile performs
the requested number of undos or redos.

Arbitrary Length Lines and Binary Data
vile can edit files with arbitrary length lines, and with an arbitrary number of lines.

vile automatically handles binary data. No special command lines or options are re-
quired. To enter 8-bit text, type ^V followed by an x and two hexadecimal digits, or a
0 and three octal digits, or three decimal digits.

You can also enter 16-bit Unicode values by typing ^V followed by a u and up to four
hexadecimal digits. If the current buffer’s file-encoding option is one of the Unicode
flavors (utf-8, utf-16, or utf-32), vile stores it directly as UTF-8, displaying it accord-
ing to the capabilities of the terminal or display.

This leads us into the topic of localization.

Locale support

For many years, vile had only rudimentary locale support. In part this was because
locale support on the various platforms was rudimentary (except for vendor Unix
systems). It had its own character type tables (i.e., control, numeric, printable,

Improved Editing Facilities | 361

www.it-ebooks.info

http://www.it-ebooks.info/


punctuation, as well as application-specific filename, wildcard, shell), allowing you to
specify which of those non-ASCII characters were printable.

Times change, and vile continues to evolve according to its users’ needs. Here is a brief
summary of those changes, ordered logically rather than in the order they were
developed:

• Rather than having a fixed notion of the character types, vile imports the host’s
character type tables and then provides commands to modify the data via scripts.§

• vile regular expressions support POSIX character classes, as well as classes corre-
sponding to vile’s own character types.

• vile supports extraction of tokens from the screen, e.g., for tags, for scripting, etc.
Once, these tokens were a mixture of character-type tests with special parsing logic.
Now, they are purely regular expressions, with no need for the parsing logic.

• Editing a file containing 8-bit data—e.g., data encoded in ISO-8859-7 (Greek)—
when the host’s locale encoding uses UTF-8 can be challenging. When vile starts
up, it checks whether the host locale ends with UTF-8 (or similar), e.g.,
el_GR.UTF-8. If so, it then supports editing in the corresponding 8-bit locale, e.g.,
el_GR.

• Similarly, when editing files in a host environment supporting UTF-8, there are
files encoded in UTF-8. In the newest release, you can tell vile to write a file in
various Unicode encodings, and to read the same encodings. The 8-bit editing
model is carried forward, translating to the 8-bit encoding for buffers that are
marked as 8-bit, and directly editing (i.e., with no translation) the Unicode buffers.

These are all extensions; at each stage the older features are still retained.

There are other aspects of localization that are not addressed in vile, such as message
formatting and text collating order.

File formats

When vile reads a file, it makes several guesses about its content, in order to present
you with useful data:

• It checks whether the file permissions allow you to write to the file.

• It checks for line endings, which may be different flavors of CR, LF, or CR/LF.

• It checks for Unicode byte order marks.

• It checks for Unicode multibyte encodings.

Based on these checks, vile may set properties (called “modes”) of the newly read buffer
that apply to that buffer. In addition, it may translate the data as it is read:

§ This feature is useful even on the vendor Unix systems, which do not always deliver correct tables.

362 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


• It removes the line endings from each line, remembering the associated
recordseparator mode.

• If the file is missing a final line ending, vile sets the nonewline option.

• It translates UTF-16 and UTF-32 data into UTF-8, remembering the associated
file-encoding option.

When you tell vile to write a buffer to a file, it uses these local option settings to
reconstruct the file.

Incremental Searching
As mentioned earlier in the section “Incremental Searching” on page 136, you perform
incremental searching in vile using the ^X S and ^X R commands. It is not necessary
to set an option to enable incremental searching.

The cursor moves through the file as you type, always being placed on the first character
of the text that matches. ̂ X S incrementally searches forward through the file, whereas
^X R incrementally searches backward.

You may wish to add the following commands (described later in “The vile Editing
Model” on page 368) to your .vilerc file to make the more familiar / and ? search
commands work incrementally:  

bind-key incremental-search /
bind-key reverse-incremental-search ?

Also of interest is the “visual match” facility, which highlights all occurrences of the
matched expression. For a .vilerc file:

set visual-matches reverse

directs vile to use reverse video for visual matching. Since the highlighting can some-
times be visually distracting, the = command turns off any current highlighting until
you enter a new search pattern.

Left-Right Scrolling
As mentioned earlier in the section “Left-Right Scrolling” on page 137, you enable left-
right scrolling in vile using :set nolinewrap. Unlike the other editors, left-right scroll-
ing is the default. Long lines are marked at the left and right edges with < and >. The
value of sideways controls the number of characters by which vile shifts the screen
when scrolling left to right. With sideways set to zero, each scroll moves the screen by
one third. Otherwise, the screen scrolls by the desired number of characters.

Improved Editing Facilities | 363

www.it-ebooks.info

http://www.it-ebooks.info/


Visual Mode
vile is different from elvis and Vim in the way you highlight the text you want to
operate on. It uses the “quoted motion” command, q.  

You enter q at the beginning of the region, any other vi motions to get to the opposite
end of the region, and then another q to end the quoted motion. vile highlights the
marked text.

Arguments to the q command determine what kind of highlighting it will do. 1q (same
as q) does an exact highlighting, 2q does line-at-a-time highlighting, and 3q does rec-
tangular highlighting.

Typically, you use a quoted motion in conjunction with an operator, such as d or y.
Thus, d3qjjwq deletes the rectangle indicated by the motions. When used without an
operator, the region is left highlighted. It can be referred to later using ^S. Thus, d ^S
will delete the highlighted region.

In addition, rectangular regions can be indicated through the use of marks.‖ As you
know, a mark can be used to refer to either a specific character (when referred to with
`) or a specific line (when referred to with '). In addition, referring to the mark (say, a
mark set with mb) with `b instead of 'b can change the nature of the operation being
done—d'b will delete a set of lines, and d`b will delete two partial lines and the lines
in between. Using the ` form of mark reference gives a more “exact” region than the
' form of mark reference.

vile adds a third form of mark reference. The \ command can be used as another way
of referring to a mark. By itself, it behaves just like ` and moves the cursor to the
character at which the mark was set. When combined with an operator, however, the
behavior is quite different. The mark reference becomes “rectangular,” such that the
action d\b will delete the rectangle of characters whose corners are marked by the cursor
and the character that holds mark b:

Keystrokes Results

ma  The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the book into the late 1990&rsquo;s.
 In particular, besides the &ldquo;original&rdquo; version of
 <command>vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available &ldquo;clones&rdquo;
 or work-alike editors.

 Set mark a at the b in book.

3jfr  The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the book into the late 1990&rsquo;s.
 In particular, besides the &ldquo;original&rdquo; version of
 <command >vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available &ldquo;clones&rdquo;
 or work-alike editors.

 Move the cursor to the r in number to mark the opposite corner.

‖ Thanks to Paul Fox for this explanation.

364 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Keystrokes Results

^A ~\a  The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the BOOK INTO The late 1990&rsquo;s.
 In particulAR, BESIDES the &ldquo;original&rdquo; version of
 <command>vi</COMMAND> that comes as a standard part of every Unix system,
 there are nOW A NUMBER of freely available &ldquo;clones&rdquo;
 or work-alike editors.

 Toggle the case of the rectangle bounded with mark a.

The commands that define arbitrary regions and operate upon them are summarized
in Table 18-6.

Table 18-6. vile block mode operations

Command Operation

q Start and end a quoted motion.

^A r Open up a rectangle.

> Shift text to the right. Same as ^A r when the region is rectangular.

< Shift text to the left. Same as d when the region is rectangular.

y Yank the whole region. vile remembers that it was rectangular.

c Change the region. For a nonrectangular region, delete all the text between the end points
and enter insert mode. For a rectangular region, prompt for the text to fill the lines.

^A u Change the case of the region to all uppercase.

^A l Change the case of the region to all lowercase.

^A ~ Toggle the case of all alphabetic characters in the region.

^A SPACE Fill the region with spaces.

p, P Put the text back. vile does a rectangular put if the original text was rectangular.

^A p, ^A P Force previously yanked text to be put back as if it were rectangular. The width of the longest
yanked line is used for the rectangle’s width.

Programming Assistance
vile’s programming assistance capabilities are discussed in this section.

Edit-Compile Speedup
vile uses two straightforward vi mode commands to manage program development,
shown in Table 18-7.

Table 18-7. vile program development vi mode commands

Command Function

^X !command ENTER Run command, saving the output in a buffer named [Output].

^X ^X Find the next error. vile parses the output and moves to the location of each
successive error.

Programming Assistance | 365

www.it-ebooks.info

http://www.it-ebooks.info/


vile understands the Entering directory XXX and Leaving directory XXX messages that
GNU make generates, allowing it to find the correct file, even if it’s in a different
directory.

The error messages are parsed using regular expressions in the buffer [Error Expres
sions]. vile automatically creates this buffer, and then it uses the buffer when you use
^X ^X. You can add expressions to it as needed, and it has an extended syntax that
allows you to specify where filenames, line numbers, columns, and so on appear in the
error messages. Full details are provided in the online help, but you probably won’t
need to make any changes, as it works pretty well “out of the box.”

vile’s error finder also compensates for changes in the file, keeping track of additions
and deletions as you progress to each error.

The error finder applies to the most recent buffer created by reading from a shell com-
mand. For example, ^X!command produces a buffer named [Output], and :e !command
produces a buffer named [!command]. The error finder will be set appropriately.

You can point the error finder at an arbitrary buffer (not just the output of shell com-
mands) using the :error-buffer command. This lets you use the error finder on the
output of previous compiler or egrep runs.

Syntax Highlighting
vile supports syntax highlighting in all configurations. It uses custom syntax filter
programs to perform syntax coloring. These may be built into vile or run as external
programs. vile sends the contents of the buffer to be colored by the syntax filter, reads
a marked-up version of it, and applies the markup to color the buffer.

Built-in filters are faster than external programs, and eliminate interfer-
ence from your shell when displaying in a terminal. For some platforms,
the syntax filters can be dynamically loaded. This allows the editor ex-
ecutable to be smaller, though not as fast as with the built-in filters.

There are currently 71 programs, as well as a separate program for Unix manpages.
Some of the programs are used for more than one type of file. For instance, C, C++,
and Java have similar syntax, but use different keywords.

vile provides macros that run the syntax filters on demand, or automatically as you
modify the buffer. These are summarized in Table 18-8.

Table 18-8. vile syntax highlighting commands

Command Key binding Function

:HighlightFilter  Invoke syntax-highlighting filter on the current buffer.
vile chooses a filter based on an extended property of the

366 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


Command Key binding Function
buffer, called a major mode (discussed later in the section
“Major Modes” on page 370).

If the filters are built-in, vile’s initialization sets the auto-
color mode to invoke this macro five seconds after you stop
modifying a buffer.

:HighlightFilterMsg ^X-q Attach highlighting to the current buffer using HighlightFil
ter. Display a message on completion.a

:HighlightClear ^X-Q Clear all highlighting from the current buffer. This does not
alter the buffer’s major mode.

:set-highlighting majormode  Change the buffer’s major mode to majormode and run the
syntax highlighter.

:show-filtermsgs  Show syntax-filter error messages for the current buffer. If
the syntax filter finds any errors, it reports them, and vile
displays them in the [Filter Messages] buffer and sets the
error buffer to allow you to step through the places where
an error is found.

a When syntax highlighting was first implemented in vile in the mid-1990s, it was important to show that
it was completed. Times change—machines are faster.

Each time a syntax filter runs, it reads one or more external files containing the keywords
to be highlighted, along with their corresponding color and video attributes (bold,
underline, italic). It searches for these files (suffixed .keywords) using the name of the
buffer’s majormode. The search rules are documented in the online help. You can use
the :which-keywords macro to show the locations where vile will look for the files, and
where it finds them. See Example 18-1.

Example 18-1. Sample output of “:which-keywords cmode”

Show which keyword-files are tested for:
        cmode                           
(* marks found-files)

$cwd                                    
  ./.c.keywords
$HOME
  ~/.c.keywords
  ~/.vile/c.keywords
$startup-path                           
* /usr/local/share/vile/c.keywords

The major mode, which always ends with “mode”

Your current working directory

vile’s search path for scripts

Whether the configuration is X11, terminal (termcap, terminfo, curses), or Windows,
vile’s syntax filters use a common set of colors, defined in classes: Action, Comment,
Error, Ident, Ident2, Keyword, Keyword2, Literal, Number, Preproc, and Type. Most of the

Programming Assistance | 367

www.it-ebooks.info

http://www.it-ebooks.info/


keyword definitions refer to a class. Doing this allows you to modify all of the colors
by changing just one file, normally your $HOME/.vile.keywords file. The online help
gives details on customizing the syntax colors.

On the one hand, because syntax highlighting is accomplished with an external pro-
gram, it should be possible to write any number of highlighters for different languages.
On the other hand, because the facilities are rather low-level, doing so is not for non-
programmers. The online help describes how the highlight filters should work.

The directory ftp://invisible-island.net/vile/utilities contains user-contributed filters for
coloring makefiles, input, perl, HTML, and troff. It even contains a macro that will
color the lines in RCS files according to their age!   

Interesting Features
vile has a number of interesting features that are the topic of this section:

The vile editing model
vile’s editing model is somewhat different from vi’s. Based on concepts from
Emacs, it provides key rebinding and a more dynamic command line.

Major modes
vile supports editing “modes.” These are groups of option settings that make it
convenient for editing different kinds of files.

The procedure language
vile’s procedure language allows you to define functions and macros that make
the editor more programmable and flexible.

Miscellaneous small features
A number of smaller features make day-to-day editing easier.

The vile Editing Model
In vi and the other clones, editing functionality is “hardwired” into the editor. The
association between command characters and what they do is built into the code. For
example, the x key deletes characters, and the i key enters insert mode. Without re-
sorting to severe trickery, you cannot switch the functionality of the two keys (if it can
even be done at all).

vile’s editing model, derived from Emacs through MicroEMACS, is different. The ed-
itor has defined, named functions, each of which performs a single editing task, such
as delete-next-character or delete-previous-character. Many of the functions are
then bound to keystrokes, such as binding delete-next-character to x.#

# vile 9.6 has 421 defined functions (including some that are available only in the X11 or Win32
configurations), with predefined key bindings for about 260.

368 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

ftp://invisible-island.net/vile/utilities
http://www.it-ebooks.info/


vile has different flavors of key bindings for its insert, command, and selection modes.
Here we are describing the bindings for the normal editing mode. Changing bindings
is very easy to do. Use the :bind-key command, and as arguments, give the name of the
function and then the key sequence to bind the function to. As mentioned earlier, you
might put the following commands into your .vilerc file:

bind-key incremental-search /
bind-key reverse-incremental-search ?

These commands change the / and ? search commands to do incremental searching.

In addition to predefined functions, vile contains a simple programming language that
allows you to write procedures. You can then bind the command for executing a pro-
cedure to a keystroke sequence. GNU Emacs uses a variant of Lisp for its language,
which is extremely powerful. vile has a somewhat simpler, less general-purpose
language.

Also, as in Emacs, the vile command line is very interactive. Many commands display
a default value for their operand, which you can either edit if inappropriate or select
by hitting ENTER . As you type vi mode editing commands, such as those that change
or delete characters, you will see feedback about the operation in the status line.

The “amazing” ex mode that Paul referred to earlier is best reflected in the behavior of
the :s (substitute) command. It prompts for each part of the command: the search
pattern, the replacement text, and any flags.

As an example, let’s assume you wish to change all instances of perl to awk everywhere
in your file. In the other editors, you’d simply type :1,$s/perl/awk/g ENTER , and
that’s what would appear on the command line. The following examples describe what
you see on the vile colon command line as you type:

Keystrokes Results

:1,$s The first part of the substitute command.

/ substitute pattern:  
vile prompts you for the pattern to search for. Any previous pattern is placed there for you to
reuse.

perl/ replacement string:  
At the next / delimiter, vile prompts you for the replacement text. Any previous text is placed
there for you to reuse.

awk/ (g)lobally, ([1-9])th occurrence on line, (c)onfirm, and/or (p)rint result:  
At the final delimiter, vile prompts for the optional flags. Enter any desired flags, then press
ENTER .

vile follows through with this style of behavior on all appropriate ex commands. For
example, the read command (:r) prompts you with the name of the last file you read.
To read that file again, just hit ENTER .

Interesting Features | 369

www.it-ebooks.info

http://www.it-ebooks.info/


Finally, vile’s ex command parser is weaker than in the other editors. For example,
you cannot use search patterns to specify line ranges (:/now/,/forever/s/perl/awk/g),
and the move command (m) is not implemented. In practice, what’s not implemented
does not seem to hinder you very much.

Major Modes
A major mode* is a collection of option settings that apply when editing a certain class
of file. These options apply on a per-buffer basis, such as the tab-stop settings.

vile provides three types of options:

• Universal, applied to the program

• Buffer, applied to the content of a memory buffer

• Window, applied to windows (“panes,” in our terminology)

The buffer—and window—option settings can be global or local values. Any buffer (or
window, depending on the option) can have its own private (local) option value. If it
does not have a private value, it uses the global value. Major modes add a level between
the buffer global and local values by providing option values that a buffer uses if it does
not have a private value.

vile has two built-in major modes: cmode, for editing C and C++ programs, and vile
mode, for its scripts that are loaded into memory buffers. With cmode, you can use % to
match C preprocessor conditionals (#if, #else, and #endif). vile will do automatic
source code indentation based on the placement of braces ({ and }), and it will do smart
formatting of C comments. The tabstop and shiftwidth options are set on a per-
major-mode basis as well.

Using major modes, you can apply the same features to programs written in other
languages. This example, courtesy of  Thomas Dickey, defines a new major mode,
shmode, for editing Bourne shell scripts. (This is useful for any Bourne-style shell, such
as ksh, bash, or zsh.)

define-mode sh
set shsuf "\.sh$"
set shpre "^#!\\s*\/.*sh\\>$"
define-submode sh comment-prefix "^\\s*/[:#]"
define-submode sh comments       "^\\s*/\\?[:#]\\s+/\\?\\s*$"
define-submode sh fence-if       "^\\s*\\<if\\>"
define-submode sh fence-elif     "^\\s*\\<elif\\>"
define-submode sh fence-else     "^\\s*\\<else\\>"
define-submode sh fence-fi       "^\\s*\\<fi\\>"

* vile’s documentation spells it as a single word.

370 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


The shsuf (shell suffix) variable describes the filename suffix that indicates a file is a
shell script. The shpre (shell preamble) variable describes a first line of the file that
indicates that the file contains shell code. The define-submode commands then add
options that apply only to buffers where the corresponding major mode is set. The
examples here set up the smart comment formatting and the smart % command match-
ing for shell programs.

The example shown is more verbose than needed. vile’s scripting language recognizes
a more concise description using ~with:

define-mode sh
~with define-submode sh
        suf             "\.sh$"
        pre             "^#!\\s*\/.*sh\\>$"
        comment-prefix  "^\\s*/[:#]"
        comments        "^\\s*/\\?[:#]\\s+/\\?\\s*$"
        fence-if        "^\\s*\\<if\\>"
        fence-elif      "^\\s*\\<elif\\>"
        fence-else      "^\\s*\\<else\\>"
        fence-fi        "^\\s*\\<fi\\>"
~endwith

With its initialization scripts, vile provides 90 predefined major modes. Use the :show-
majormodes command to see the definitions of the available major modes.

The suffix and prefix are criteria used by vile to decide which major mode to apply,
when it reads a file into a buffer.† Table 18-9 lists all of the criteria.

Table 18-9. Major mode criteria

Criteria Description

after Force the defined major mode to be checked after the given major mode. Normally,
major modes are checked in the order in which they are defined.

before Force the defined major mode to be checked before the given major mode. Nor-
mally, major modes are checked in the order in which they are defined.

mode-filename (mf) A regular expression describing filenames for which the corresponding major mode
will be set. The expression is applied only to the portion of the complete pathname
after removing the directory name.

mode-pathname (mp) A regular expression describing pathnames for which the corresponding major
mode will be set.

preamble (pre) A regular expression describing the first line of filenames for which the correspond-
ing major mode will be set.

qualifiers Tells how to combine the preamble and suffixes criteria. Use all to tell vile to use
both, and any to use either.

suffixes (suf) A regular expression describing filename suffixes for which the corresponding major
mode will be set. The expression is applied only to the portion of the filename
starting with the first period.

† These criteria are a fourth category of option, counting universal, buffer, and window. They are not listed
with the others in Table B-5 because you set them in an entirely different way.

Interesting Features | 371

www.it-ebooks.info

http://www.it-ebooks.info/


You can always tell vile to use a specific major mode; for example:

:setl cmode

will set it to “c” mode.‡ But that does not update the syntax highlighting. Use the macro:

:set-h cmode

(set-highlighting; see Table 18-8), which does both parts.

The Procedure Language
vile’s procedure language is almost unchanged from that of MicroEMACS. Comments
begin with a semicolon or a double quote character. Environment variable names
(editor options) start with a $, and user variable names start with %. A number of built-
in functions exist for doing comparisons and testing conditions; their names all begin
with &. Flow control commands and certain others begin with ~. An @ with a string
prompts the user for input, and the user’s answer is returned. This rather whimsical
example from the macros.doc file should give you a taste of the language’s flavor:

~if &sequal %curplace "timespace vortex"
        insert-string "First, rematerialize\n"
~endif
~if &sequal %planet "earth"     ;If we have landed on earth...
        ~if &sequal %time "late 20th century"  ;and we are then
                write-message "Contact U.N.I.T."
        ~else
                insert-string "Investigate the situation....\n"
                insert-string "(SAY 'stay here Sara')\n"
        ~endif
~elseif &sequal %planet "luna"  ;If we have landed on our neighbor...
        write-message "Keep the door closed"
~else
        setv %conditions @"Atmosphere conditions outside? "
        ~if &sequal %conditions "safe"
                insert-string &cat "Go outside......" "\n"
                insert-string "lock the door\n"
        ~else
                insert-string "Dematerialize..try somewhen else"
                newline
        ~endif
~endif

You can store these procedures into a numbered macro or give them names that can
be bound to keystrokes. The procedure just shown is most useful when using the Tardis
vile port. ☺
This more realistic example from Paul Fox runs grep, searching for the word under the
cursor in all C source files. It then puts the results in a buffer named after the word,

‡ The setl command sets the local properties of the buffer. The command :set cmode sets the default major
mode if vile is unable to recognize the file.

372 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://www.it-ebooks.info/


and sets things up so that the built-in error finder (^X ^X) will use this output as its list
of lines to visit. Finally, the macro is bound to ^A g. The ~force command allows the
following command to fail without generating an error message:

14 store-macro
        set-variable %grepfor $identifier
        edit-file &cat "!egrep -n " &cat %grepfor " *.[ch]"
        ~force rename-buffer %grepfor
        error-buffer $cbufname
~endm
bind-key execute-macro-14 ^A-g

User-defined procedures can have parameters, much like the Bourne shell—but the
parameters can be limited to specific data types. This makes procedures work as ex-
pected with vile’s editing model (and command-history mechanism). The procedures
are not completely interchangeable with the built-in commands, since there is not yet
a mechanism for making the undo feature treat a whole macro as a single operation.

Finally, the read-hook and write-hook variables can be set to names of procedures to
run after reading and before writing a file, respectively. This allows you to do things
similar to the pre- and post-operation files in elvis and the autocommand facility in
Vim.

The language is quite capable, including flow control and comparison features, as well
as variables that provide access to a large amount of vile’s internal state. The
macros.doc file in the vile distribution describes the language in detail.

Miscellaneous Small Features
Several other, smaller features are worth mentioning:

Piping into vile
If you make vile the last command in a pipeline, it will create a buffer named
[Standard Input] and edit that buffer for you. This is perhaps the “pager to end all
pagers.”

Editing Windows files
When set to true, the  dos option causes vile to strip carriage returns at the end of
a line in files when reading, and to write them back out again. This makes it easy
to edit Windows files on a Unix or GNU/Linux system.

Text reformatting
The ^A f command reformats text, performing word wrapping on selected text. It
understands C and shell comments (lines with a leading * or #) and quoted email
(a leading >). It is similar to the Unix fmt command, but faster.

Formatting the information line
The modeline-format variable is a string  that controls the way vile formats the
status line. This is the line at the bottom of each window that describes the buffer’s

Interesting Features | 373

www.it-ebooks.info

http://www.it-ebooks.info/


status, such as its name, current major mode, modification status, insert versus
command mode, and so on.§

The string consists of printf(3)-style percent sequences. For example, %b represents
the buffer name, %m the major mode, and %l the line number if ruler has been set.
Characters in the string that are not part of a format specifier are output verbatim.

vile has many other features. The vi finger-feel makes it easy to switch to vile from
another editor. The programmability provides flexibility, and its interactive nature and
use of defaults is perhaps friendlier than traditional vi for the novice.

Sources and Supported Operating Systems
The official WWW location for vile is http://invisible-island.net/vile/vile.html. The
ftp location is ftp://invisible-island.net/vile/vile.tar.gz. The file vile.tar.gz is always a
symbolic link to the current version.

vile is written in ANSI C. It builds and runs on Unix, OpenVMS, MS-DOS, Win32
console and Win32 GUI, BeOS, QNX, and OS/2.

Compiling vile is straightforward. Retrieve the distribution via ftp or from the web
page. Uncompress and untar it, run the configure program, and then run make:

$ gzip -d < vile.tar.gz | tar -xvpf -
...
$ cd vile-*; ./configure
...
$ make
...

vile should configure and build with no problems. Use make install to install it.

If you want syntax coloring to work smoothly, you may wish to run
configure with the option --with-builtin-filters. You should use
flex (version 2.54a or newer) rather than lex, since Unix versions of
that tool do not perform well. The configure script will also not accept
a version of flex that is too old.

Should you need to report a bug or problem in vile, send email to the address
vile@nongnu.org. This is the preferred way to report bugs. If necessary, you can contact
Thomas Dickey directly at dickey@invisible-island.net. 

§ vile’s documentation refers to this as the modeline. However, since vile also implements the vi modeline
feature, we are calling it a status line, to reduce confusion.

374 | Chapter 18: vile: vi Like Emacs

www.it-ebooks.info

http://invisible-island.net/vile/vile.html
ftp://invisible-island.net/vile/vile.tar.gz
http://www.it-ebooks.info/


PART IV

Appendixes

Part IV provides reference material that should be of interest to a vi user. This part
contains the appendixes:

• Appendix A, The vi, ex, and Vim Editors

• Appendix B, Setting Options

• Appendix C, Problem Checklists

• Appendix D, vi and the Internet

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


APPENDIX A

The vi, ex, and Vim Editors

This appendix summarizes the standard features of vi in quick-reference format. Com-
mands entered at the colon (known as ex commands because they date back to the
original creation of that editor) are included, as well as the most popular Vim features.

This appendix presents the following topics:

• Command-line syntax

• Review of vi operations

• Alphabetical list of keys in command mode

• vi commands

• vi configuration

• ex basics

• Alphabetical summary of ex commands

Command-Line Syntax
The three most common ways of starting a vi session are:

vi [options] file
vi [options] +num file
vi [options] +/pattern file

You can open file for editing, optionally at line num or at the first line matching pat-
tern. If no file is specified, vi opens with an empty buffer.

Command-Line Options
Because vi and ex are the same program, they share the same options. However, some
options only make sense for one version of the program. Options specific to Vim are
so marked:

+[ num ]
Start editing at line number num, or the last line of the file if num is omitted.

377

www.it-ebooks.info

http://www.it-ebooks.info/


+/pattern
Start editing at the first line matching pattern. (For ex, this fails if nowrapscan is set
in your .exrc startup file, since ex starts editing at the last line of a file.)

+?pattern
Start editing at the last line matching pattern.

-b
Edit the file in binary mode. {Vim}

-c command
Run the given ex command upon startup. Only one -c option is permitted for vi;
Vim accepts up to 10. An older form of this option, +command, is still supported.

--cmd command
Like -c, but execute the command before any resource files are read. {Vim}

-C
Solaris vi: same as -x, but assume the file is encrypted already.

Vim: start the editor in vi-compatible mode.

-d
Run in diff mode. Works like vimdiff. {Vim}

-D
Debugging mode for use with scripts. {Vim}

-e
Run as ex (line-editing rather than full-screen mode).

-h
Print help message, then exit. {Vim}

-i file
Use the specified file instead of the default (~/.viminfo) to save or restore Vim’s
state. {Vim}

-l
Enter Lisp mode for running Lisp programs (not supported in all versions).

-L
List files that were saved due to an aborted editor session or system crash (not
supported in all versions). For Vim, this option is the same as -r.

-m
Start the editor with the write option turned off so that the user cannot write to
files. {Vim}

-M
Do not allow text in files to be modified. {Vim}

-n
Do not use a swap file; record changes in memory only. {Vim}

378 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


--noplugin
Do not load any plug-ins. {Vim}

-N
Run Vim in a non-vi-compatible mode. {Vim}

-o[num]
Start Vim with num open windows. The default is to open one window for each
file. {Vim}

-O[num]
Start Vim with num open windows arranged horizontally (split vertically) on the
screen. {Vim}

-r [file]
Recovery mode; recover and resume editing on file after an aborted editor session
or system crash. Without file, list files available for recovery.

-R
Edit files in read-only mode.

-s
Silent; do not display prompts. Useful when running a script. This behavior also
can be set through the older - option. For Vim, applies only when used together
with -e.

-s scriptfile
Read and execute commands given in the specified scriptfile as if they were typed
in from the keyboard. {Vim}

-S commandfile
Read and execute commands given in commandfile after loading any files for editing
specified on the command line. Shorthand for vim -c 'source commandfile'. {Vim}

-t tag
Edit the file containing tag, and position the cursor at its definition.

-T type
Set the option terminal type. This value overrides the $TERM environment varia-
ble. {Vim}

-u file
Read configuration information from the specified resource file instead of the de-
fault .vimrc resource file. If the file argument is NONE, Vim will read no resource
files, load no plug-ins, and run in compatible mode. If the argument is NORC, it will
read no resource files, but it will load plug-ins. {Vim}

-v
Run in full-screen mode (default for vi).

--version
Print version information, then exit. {Vim}

Command-Line Syntax | 379

www.it-ebooks.info

http://www.it-ebooks.info/


-V[num]
Verbose mode; print messages about what options are being set and what files are
being read or written. You can set a level of verbosity to increase or decrease the
number of messages received. The default value is 10 for high verbosity. {Vim}

-w rows
Set the window size so rows lines at a time are displayed; useful when editing over
a slow dial-up line (or long distance Internet connection). Older versions of vi do
not permit a space between the option and its argument. Vim does not support
this option.

-W scriptfile
Write all typed commands from the current session to the specified scriptfile. The
file created can be used with the -s command. {Vim}

-x
Prompt for a key that will be used to try to encrypt or decrypt a file using crypt
(not supported in all versions).*

-y
Modeless vi; run Vim in insert mode only, without a command mode. This is the
same as invoking Vim as evim. {Vim}

-Z
Start Vim in restricted mode. Do not allow shell commands or suspension of the
editor. {Vim}

Although most people know ex commands only by their use within vi, the editor also
exists as a separate program and can be invoked from the shell (for instance, to edit
files as part of a script). Within ex, you can enter the vi or visual command to start
vi. Similarly, within vi, you can enter Q to quit the vi editor and enter ex.

You can exit ex in several ways:

:x Exit (save changes and quit).

:q! Quit without saving changes.

:vi Enter the vi editor.

Review of vi Operations
This section provides a review of the following:

• vi modes

• Syntax of vi commands

• Status-line commands

* The crypt command’s encryption is weak. Don’t use it for serious secrets.

380 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Command Mode
Once the file is opened, you are in command mode. From command mode, you can:

• Invoke insert mode

• Issue editing commands

• Move the cursor to a different position in the file

• Invoke ex commands

• Invoke a Unix shell

• Save the current version of the file

• Exit vi

Insert Mode
In insert mode, you can enter new text in the file. You normally enter insert mode with
the i command. Press the ESC  key to exit insert mode and return to command mode.
The full list of commands that enter insert mode is provided later in the section “Insert
Commands” on page 386.

Syntax of vi Commands
In vi, editing commands have the following general form:

[n] operator [m] motion

The basic editing operators are:

c Begin a change.

d Begin a deletion.

y Begin a yank (or copy).

If the current line is the object of the operation, the motion is the same as the operator:
cc, dd, yy. Otherwise, the editing operators act on objects specified by cursor-movement
commands or pattern-matching commands. (For example, cf. changes up to the next
period.) n and m are the number of times the operation is performed, or the number of
objects the operation is performed on. If both n and m are specified, the effect is n  m.

An object of operation can be any of the following text blocks:

word
Includes characters up to a whitespace character (space or tab) or punctuation
mark. A capitalized object is a variant form that recognizes only whitespace.

sentence
Up to ., !, or ?, followed by two spaces.

Review of vi Operations | 381

www.it-ebooks.info

http://www.it-ebooks.info/


paragraph
Up to the next blank line or paragraph macro defined by the para= option.

section
Up to the next nroff/troff section heading defined by the sect= option.

motion
Up to the character or other text object as specified by a motion specifier, including
pattern searches.

Examples

2cw Change the next two words.

d} Delete up to the next paragraph.

d^ Delete back to the beginning of the line.

5yy Copy the next five lines.

y]] Copy up to the next section.

cG Change to the end of the edit buffer.

More commands and examples may be found in the section “Changing and deleting
text” on page 387 later in this appendix.

Visual mode (Vim only)

Vim provides an additional facility, “visual mode.” This allows you to highlight blocks
of text, which then become the object of edit commands such as deletion or saving
(yanking). Graphical versions of Vim allow you to use the mouse to highlight text in a
similar fashion. See the earlier section “Visual Mode Motion” on page 168 for more
information.

v Select text in visual mode one character at a time.

V Select text in visual mode one line at a time.

CTRL-V Select text in visual mode in blocks.

Status-Line Commands
Most commands are not echoed on the screen as you input them. However, the status
line at the bottom of the screen is used to edit these commands:

/ Search forward for a pattern.

? Search backward for a pattern.

: Invoke an ex command.

! Invoke a Unix command that takes as its input an object in the buffer and replaces it with output from
the command. You type a motion command after the ! to describe what should be passed to the Unix
command. The command itself is entered on the status line.

382 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Commands that are entered on the status line must be entered by pressing the EN-
TER  key. In addition, error messages and output from the CTRL-G  command are
displayed on the status line.

vi Commands
vi supplies a large set of single-key commands when in command mode. Vim supplies
additional multikey commands.

Movement Commands
Some versions of vi do not recognize extended keyboard keys (e.g., arrow keys, page
up, page down, home, insert, and delete); some do. All versions, however, recognize
the keys in this section. Many users of vi prefer to use these keys, as it helps them keep
their fingers on the home row of the keyboard. A number preceding a command repeats
the movement. Movement commands are also used after an operator. The operator
works on the text that is moved.

Character

h, j, k, l Left, down, up, right ( ← , ↓ , ↑ , → )

Spacebar Right

BACKSPACE Left

CTRL-H Left

Text

w, b Forward, backward by “word” (letters, numbers, and underscores make up words).

W, B Forward, backward by “WORD” (only whitespace separates items).

e End of word.

E End of WORD.

ge End of previous word. {Vim}

gE End of previous WORD. {Vim}

), ( Beginning of next, current sentence.

}, { Beginning of next, current paragraph.

]], [[ Beginning of next, current section.

][, [] End of next, current section. {Vim}

Lines

Long lines in a file may show up on the screen as multiple lines. (They wrap around
from one screen line to the next.) Although most commands work on the lines as

vi Commands | 383

www.it-ebooks.info

http://www.it-ebooks.info/


defined in the file, a few commands work on lines as they appear on the screen. The
Vim option wrap allows you to control how long lines are displayed.

0, $ First, last position of current line.

^, _ First nonblank character of current line.

+, - First nonblank character of next, previous line.

ENTER First nonblank character of next line.

num | Column num of current line.

g0, g$ First, last position of screen line. {Vim}

g^ First nonblank character of screen line. {Vim}

gm Middle of screen line. {Vim}

gk, gj Move up, down one screen line. {Vim}

H Top line of screen (Home position).

M Middle line of screen.

L Last line of screen.

num H num lines after top line.

num L num lines before last line.

Screens

CTRL-F , CTRL-B Scroll forward, backward one screen.

CTRL-D , CTRL-U Scroll down, up one-half screen.

CTRL-E , CTRL-Y Show one more line at bottom, top of screen.

z ENTER Reposition line with cursor to top of screen.

z. Reposition line with cursor to middle of screen.

z- Reposition line with cursor to bottom of screen.

CTRL-L Redraw screen (without scrolling).

CTRL-R vi: redraw screen (without scrolling).

 Vim: redo last undone change.

Searches

/ pattern Search forward for pattern. End with ENTER .

/ pattern /+ num Go to line num after pattern. Forward search for pattern.

/ pattern /- num Go to line num before pattern. Forward search for pattern.

? pattern Search backward for pattern. End with ENTER .

? pattern ?+ num Go to line num after pattern. Backward search for pattern.

? pattern ?- num Go to line num before pattern. Backward search for pattern.

:noh Suspend search highlighting until next search. {Vim}

n Repeat previous search.

384 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


N Repeat search in opposite direction.

/ Repeat previous search forward.

? Repeat previous search backward.

* Search forward for word under cursor. Matches only exact words. {Vim}

# Search backward for word under cursor. Matches only exact words. {Vim}

g* Search backward for word under cursor. Matches the characters of this word when
embedded in a longer word. {Vim}

g# Search backward for word under cursor. Matches the characters of this word when
embedded in a longer word. {Vim}

% Find match of current parenthesis, brace, or bracket.

f x Move cursor forward to x on current line.

F x Move cursor backward to x on current line.

t x Move cursor forward to character before x in current line.

T x Move cursor backward to character after x in current line.

, Reverse search direction of last f, F, t, or T.

; Repeat last f, F, t, or T.

Line numbering

CTRL-G Display current line number.

gg Move to first line in file. {Vim}

num G Move to line number num.

G Move to last line in file.

: num Move to line number num.

Marks

m x Place mark x at current position.

` x (Backquote.) Move cursor to mark x.

' x (Apostrophe.) Move to start of line containing x.

`` (Backquotes.) Return to position before most recent jump.

'' (Apostrophes.) Like preceding, but return to start of line.

'" (Apostrophe quote.) Move to position when last editing the file. {Vim}

`[, '] (Backquote bracket.) Move to beginning/end of previous text operation. {Vim}

'[, '] (Apostrophe bracket.) Like preceding, but return to start of line where operation occurred. {Vim}

`. (Backquote period.) Move to last change in file. {Vim}

'. (Apostrophe period.) Like preceding, but return to start of line. {Vim}

'0 (Apostrophe zero.) Position where you last exited Vim. {Vim}

:marks List active marks. {Vim}

vi Commands | 385

www.it-ebooks.info

http://www.it-ebooks.info/


Insert Commands

a Append after cursor.

A Append to end of line.

c Begin change operation.

C Change to end of line.

gI Insert at beginning of line. {Vim}

i Insert before cursor.

I Insert at beginning of line.

o Open a line below cursor.

O Open a line above cursor.

R Begin overwriting text.

s Substitute a character.

S Substitute entire line.

ESC Terminate insert mode.

The following commands work in insert mode:

BACKSPACE Delete previous character.

DELETE Delete current character.

TAB Insert a tab.

CTRL-A Repeat last insertion. {Vim}

CTRL-D Shift line left to previous shiftwidth. {Vim}

CTRL-E Insert character found just below cursor. {Vim}

CTRL-H Delete previous character (same as backspace).

CTRL-I Insert a tab.

CTRL-K Begin insertion of multikeystroke character.

CTRL-N Insert next completion of the pattern to the left of the cursor. {Vim}

CTRL-P Insert previous completion of the pattern to the left of the cursor. {Vim}

CTRL-T Shift line right to next shiftwidth. {Vim}

CTRL-U Delete current line.

CTRL-V Insert next character verbatim.

CTRL-W Delete previous word.

CTRL-Y Insert character found just above cursor. {Vim}

CTRL-[ (ESC) Terminate insert mode.

Some of the control characters listed in the previous table are set by stty. Your terminal
settings may differ.

386 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Edit Commands
Recall that c, d, and y are the basic editing operators.

Changing and deleting text

The following list is not exhaustive, but it illustrates the most common operations:

cw Change word.

cc Change line.

c$ Change text from current position to end-of-line.

C Same as c$.

dd Delete current line.

num dd Delete num lines.

d$ Delete text from current position to end-of-line.

D Same as d$.

dw Delete a word.

d} Delete up to next paragraph.

d^ Delete back to beginning of line.

d/ pat Delete up to first occurrence of pattern.

dn Delete up to next occurrence of pattern.

df x Delete up to and including x on current line.

dt x Delete up to (but not including) x on current line.

dL Delete up to last line on screen.

dG Delete to end of file.

gqap Reformat current paragraph to textwidth. {Vim}

g~w Switch case of word. {Vim}

guw Change word to lowercase. {Vim}

gUw Change word to uppercase. {Vim}

p Insert last deleted or yanked text after cursor.

gp Same as p, but leave cursor at end of inserted text. {Vim}

gP Same as P, but leave cursor at end of inserted text. {Vim}

]p Same as p, but match current indention. {Vim}

[p Same as P, but match current indention. {Vim}

P Insert last deleted or yanked text before cursor.

r x Replace character with x.

R text Replace with new text (overwrite), beginning at cursor. ESC  ends replace mode.

s Substitute character.

4s Substitute four characters.

S Substitute entire line.

u Undo last change.

vi Commands | 387

www.it-ebooks.info

http://www.it-ebooks.info/


CTRL-R Redo last change. {Vim}

U Restore current line.

x Delete current cursor position.

X Delete back one character.

5X Delete previous five characters.

. Repeat last change.

~ Reverse case and move cursor right.

CTRL-A Increment number under cursor. {Vim}

CTRL-X Decrement number under cursor. {Vim}

Copying and moving

Register names are the letters a–z. Uppercase names append text to the corresponding
register.

Y Copy current line.

yy Copy current line.

" x yy Copy current line to register x.

ye Copy text to end of word.

yw Like ye, but include the whitespace after the word.

y$ Copy rest of line.

" x dd Delete current line into register x.

" x d Delete into register x.

" x p Put contents of register x.

y]] Copy up to next section heading.

J Join current line to next line.

gJ Same as J, but without inserting a space. {Vim}

:j Same as J.

:j! Same as gJ.

Saving and Exiting
Writing a file means overwriting the file with the current text.

ZZ Quit vi, writing the file only if changes were made.

:x Same as ZZ.

:wq Write file and quit.

:w Write file.

:w file Save copy to file.

: n , m w file Write lines n to m to new file.

: n , m w >> file Append lines n to m to existing file.

388 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


:w! Write file (overriding protection).

:w! file Overwrite file with current text.

:w %. new Write current buffer named file as file.new.

:q Quit vi (fails if changes were made).

:q! Quit vi (discarding edits).

Q Quit vi and invoke ex.

:vi Return to vi after Q command.

% Replaced with current filename in editing commands.

# Replaced with alternate filename in editing commands.

Accessing Multiple Files

:e file Edit another file; current file becomes alternate.

:e! Return to version of current file at time of last write.

:e + file Begin editing at end of file.

:e +num file Open file at line num.

:e # Open to previous position in alternate file.

:ta tag Edit file at location tag.

:n Edit next file in the list of files.

:n! Force next file.

:n files Specify new list of files.

:rewind Edit first file in the list.

CTRL-G Show current file and line number.

:args Display list of files to be edited.

:prev Edit previous file in the list of files.

Window Commands (Vim)
The following table lists common commands for controlling windows in Vim. See also
the split, vsplit, and resize commands in the later section “Alphabetical Summary
of ex Commands” on page 395. For brevity, control characters are marked in the fol-
lowing list by ^.

:new Open a new window.

:new file Open file in a new window.

:sp [file] Split the current window. With file, edit that file in the new window.

:sv [file] Same as :sp, but make new window read-only.

:sn [file] Edit next file in file list in new window.

:vsp [file] Like :sp, but split vertically instead of horizontally.

:clo Close current window.

vi Commands | 389

www.it-ebooks.info

http://www.it-ebooks.info/


:hid Hide current window, unless it is the only visible window.

:on Make current window the only visible one.

:res num Resize window to num lines.

:wa Write all changed buffers to their files.

:qa Close all buffers and exit.

^W s Same as :sp.

^W n Same as :new.

^W ^ Open new window with alternate (previously edited) file.

^W c Same as :clo.

^W o Same as :only.

^W j, ^W k Move cursor to next/previous window.

^W p Move cursor to previous window.

^W h, ^W l Move cursor to window on left/right of screen.

^W t, ^W b Move cursor to window on top/bottom of screen.

^W K, ^W B Move current window to top/bottom of screen.

^W H, ^W L Move current window to far left/right of screen.

^W r, ^W R Rotate windows down/up.

^W +, ^W - Increase/decrease current window size.

^W = Make all windows same height.

Interacting with the System

:r file Read in contents of file after cursor.

:r !command Read in output from command after current line.

: num r !command Like previous, but place after line num (0 for top of file).

:!command Run command, then return.

!motion command Send the text covered by motion to Unix command; replace with output.

: n , m !command Send lines n–m to command; replace with output.

num!!command Send num lines to Unix command; replace with output.

:!! Repeat last system command.

:sh Create subshell; return to editor with EOF.

CTRL-Z Suspend editor, resume with fg.

:so file Read and execute ex commands from file.

Macros

:ab in out Use in as abbreviation for out in insert mode.

:unab in Remove abbreviation for in.

:ab List abbreviations.

390 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


:map string
sequence

Map characters string as sequence of commands. Use #1, #2, etc., for the function
keys.

:unmap string Remove map for characters string.

:map List character strings that are mapped.

:map! string
sequence

Map characters string to input mode sequence.

:unmap! string Remove input mode map (you may need to quote the characters with CTRL-V ).

:map! List character strings that are mapped for input mode.

q x Record typed characters into register specified by letter x. If letter is uppercase,
append to register. {Vim}

q Stop recording. {Vim}

@ x Execute the register specified by letter x. Use @@ to repeat the last @ command.

In vi, the following characters are unused in command mode and can be mapped as
user-defined commands:

Letters
g, K, q, V, and v

Control keys
^A, ^K, ^O, ^W, ^X, ^_, and ^\

Symbols
_, *, \, =, and #

The = is used by vi if Lisp mode is set. Different versions of vi may
use some of these characters, so test them before using.

Vim does not use ^K, ^_, _, or \.

Miscellaneous Commands

< Shift text described by following motion command left by one shiftwidth. {Vim}

> Shift text described by following motion command right by one shiftwidth. {Vim}

<< Shift line left one shiftwidth (default is eight spaces).

>> Shift line right one shiftwidth (default is eight spaces).

>} Shift right to end of paragraph.

<% Shift left until matching parenthesis, brace, or bracket. (Cursor must be on the matching symbol.)

== Indent line in C-style, or using program specified in equalprg option. {Vim}

g Start many multiple character commands in Vim.

K Look up word under cursor in manpages (or program defined in keywordprg). {Vim}

vi Commands | 391

www.it-ebooks.info

http://www.it-ebooks.info/


^O Return to previous jump. {Vim}

^Q Same as ^V. {Vim} (On some terminals, resume data flow.)

^T Return to the previous location in the tag stack. (Solaris vi, Vim, nvi, elvis, and vile.)

^] Perform a tag lookup on the text under the cursor.

^\ Enter ex line-editing mode.

^^ (Caret key with Ctrl key pressed.) Return to previously edited file.

vi Configuration
This section describes the following:

• The :set command

• Options available with :set

• Example .exrc file

The :set Command
The :set command allows you to specify options that change characteristics of your
editing environment. Options may be put in the ~/.exrc file or set during a vi session.

The colon does not need to be typed if the command is put in .exrc:

:set x Enable Boolean option x; show value of other options.

:set no x Disable option x.

:set x = value Give value to option x.

:set Show changed options.

:set all Show all options.

:set x ? Show value of option x.

Appendix B provides tables of :set options for Solaris vi, Vim, nvi, elvis, and vile.
Please see that appendix for more information.

Example .exrc File
In an ex script file, comments start with the double quote character. The following lines
of code are an example of a customized .exrc file:

set nowrapscan                    " Searches don't wrap at end of file
set wrapmargin=7                  " Wrap text at 7 columns from right margin
set sections=SeAhBhChDh nomesg    " Set troff macros, disallow message
map q :w^M:n^M                    " Alias to move to next file
map v dwElp                       " Move a word
ab ORA O'Reilly Media, Inc.       " Input shortcut

392 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


The q alias isn’t needed for Vim, which has the :wn command. The v
alias would hide the Vim command v, which enters character-at-a-time
visual mode operation.

ex Basics
The ex line editor serves as the foundation for the screen editor vi. Commands in ex
work on the current line or on a range of lines in a file. Most often, you use ex from
within vi. In vi, ex commands are preceded by a colon and entered by pressing ENTER .

You can also invoke ex on its own—from the command line—just as you would invoke
vi. (You could execute an ex script this way.) Or you can use the vi command Q to quit
the vi editor and enter ex.

Syntax of ex Commands
To enter an ex command from vi, type:

:[address] command [options]

An initial : indicates an ex command. As you type the command, it is echoed on the
status line. Execute the command by pressing the ENTER  key. Address is the line
number or range of lines that are the object of command. Options and addresses are
described later. ex commands are described in the later section “Alphabetical Summary
of ex Commands” on page 395.

You can exit ex in several ways:

:x Exit (save changes and quit).

:q! Quit without saving changes.

:vi Switch to the vi editor on the current file.

Addresses
If no address is given, the current line is the object of the command. If the address
specifies a range of lines, the format is:

x,y

where x and y are the first and last addressed lines (x must precede y in the buffer). x
and y each may be a line number or a symbol. Using ; instead of , sets the current line
to x before interpreting y. The notation 1,$ addresses all lines in the file, as does %.

ex Basics | 393

www.it-ebooks.info

http://www.it-ebooks.info/


Address Symbols

1,$ All lines in the file.

x , y Lines x through y.

x ; y Lines x through y, with current line reset to x.

0 Top of file.

. Current line.

num Absolute line number num.

$ Last line.

% All lines; same as 1,$.

x - n n lines before x.

x + n n lines after x.

-[num] One or num lines previous.

+[num] One or num lines ahead.

' x (Apostrophe.) Line marked with x.

'' (Apostrophe apostrophe.) Previous mark.

/pattern/ Forward to line matching pattern.

?pattern? Backward to line matching pattern.

See Chapter 6 for more information on using patterns.

Options
!

Indicates a variant form of the command, overriding the normal behavior. The !
must come immediately after the command.

count
The number of times the command is to be repeated. Unlike in vi commands,
count cannot precede the command, because a number preceding an ex command
is treated as a line address. For example, d3 deletes three lines, beginning with the
current line; 3d deletes line 3.

file
The name of a file that is affected by the command. % stands for the current file;
# stands for the previous file.

394 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Alphabetical Summary of ex Commands
ex commands can be entered by specifying any unique abbreviation. In the following
list of reference entries, the full name appears as the heading of the reference entry, and
the shortest possible abbreviation is shown in the syntax line below it. Examples are
assumed to be typed from vi, so they include the : prompt.

abbreviate
ab [string text]

Define string when typed to be translated into text. If string and text are not specified, list all
current abbreviations.

Examples
Note: ^M appears when you type ^V followed by ENTER .

:ab ora O'Reilly Media, Inc.
:ab id Name:^MRank:^MPhone:

append
[address] a[!]
text
.

Append new text at specified address, or at present address if none is specified. Add a ! to
toggle the autoindent setting that is used during input. That is, if autoindent was enabled, !
disables it. Enter new text after entering the command. Terminate input of new text by en-
tering a line consisting of just a period.

Example
:a                     Begin appending to current line
Append this line
and this line too.
.                      Terminate input of text to append

args
ar
args file ...

Print the members of the argument list (files named on the command line), with the current
argument printed in brackets ([ ]).

The second syntax is for Vim, which allows you to reset the list of files to be edited.

Alphabetical Summary of ex Commands | 395

www.it-ebooks.info

http://www.it-ebooks.info/


bdelete
[num] bd[!] [num]

Unload buffer num and remove it from the buffer list. Add a ! to force removal of an unsaved
buffer. The buffer may also be specified by filename. If no buffer is specified, remove the
current buffer. {Vim}

buffer
[num] b[!] [num]

Begin editing buffer num in the buffer list. Add a ! to force a switch from an unsaved buffer.
The buffer may also be specified by filename. If no buffer is specified, continue editing the
current buffer. {Vim}

buffers
buffers[!]

Print the members of the buffer list. Some buffers (e.g., deleted buffers) will not be listed.
Add ! to show unlisted buffers. ls is another abbreviation for this command. {Vim}

cd
cd dir
chdir dir

Change the current directory within the editor to dir.

center
[address] ce [width]

Center the line within the specified width. If width is not specified, use textwidth. {Vim}

change
[address] c[!]
text
.

Replace the specified lines with text. Add a ! to switch the autoindent setting during input of
text. Terminate input by entering a line consisting of just a period.

396 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


close
clo[!]

Close current window unless it is the last window. If buffer in window is not open in another
window, unload it from memory. This command will not close a buffer with unsaved changes,
but you may add ! to hide it instead. {Vim}

copy
[address] co destination

Copy the lines included in address to the specified destination address. The command t (short
for “to”) is a synonym for copy.

Example
:1,10 co 50     Copy first 10 lines to just after line 50

delete
[address] d [register] [count]

Delete the lines included in address. If register is specified, save or append the text to the
named register. Register names are the lowercase letters a–z. Uppercase names append text
to the corresponding register. If count is specified, delete that many lines.

Examples
:/Part I/,/Part II/-1d  Delete to line above “Part II”
:/main/+d               Delete line below “main”
:.,$d x                 Delete from this line to last line into register x

edit
e[!] [+num] [filename]

Begin editing on filename. If no filename is given, start over with a copy of the current file.
Add a ! to edit the new file even if the current file has not been saved since the last change.
With the +num argument, begin editing on line num. Alternatively, num may be a pattern, of
the form /pattern.

Examples
:e file             Edit file in current editing buffer
:e +/^Index #       Edit alternate file at pattern match
:e!                 Start over again on current file

close | 397

www.it-ebooks.info

http://www.it-ebooks.info/


file
f [filename]

Change the filename for the current buffer to filename. The next time the buffer is written, it
will be written to file filename. When the name is changed, the buffer’s “not edited” flag is
set, to indicate that you are not editing an existing file. If the new filename is the same as a
file that already exists on the disk, you will need to use :w! to overwrite the existing file. When
specifying a filename, the % character can be used to indicate the current filename. A # can be
used to indicate the alternate filename. If no filename is specified, print the current name and
status of the buffer.

Example
:f %.new

fold
address fo

Fold the lines specified by address. A fold collapses several lines on the screen into one line,
which can later be unfolded. It doesn’t affect the text of the file. {Vim}

foldclose
[address] foldc[!]

Close folds in the specified address, or at the present address if none is specified. Add a ! to
close more than one level of folds. {Vim}

foldopen
[address] foldo[!]

Open folds in the specified address, or at the present address if none is specified. Add a ! to
open more than one level of folds. {Vim}

global
[address] g[!]/pattern/[commands]

Execute commands on all lines that contain pattern or, if address is specified, on all lines within
that range. If commands are not specified, print all such lines. Add a ! to execute commands
on all lines not containing pattern. See also v, later in this list.

398 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


Examples
:g/Unix/p               Print all lines containing “Unix”
:g/Name:/s/tom/Tom/     Change “tom” to “Tom” on all lines containing “Name:”

hide
hid

Close current window unless it is the last window, but do not remove the buffer from memory.
This command is safe to use on an unsaved buffer. {Vim}

insert
[address] i[!]
text
.

Insert text at line before the specified address, or at present address if none is specified. Add
a ! to switch the autoindent setting during input of text. Terminate input of new text by
entering a line consisting of just a period.

join
[address] j[!] [count]

Place the text in the specified range on one line, with whitespace adjusted to provide two
space characters after a period (.), no space characters before a ), and one space character
otherwise. Add a ! to prevent whitespace adjustment.

Example
:1,5j!                Join first five lines, preserving whitespace

jumps
ju

Print jump list used with CTRL-I  and CTRL-O  commands. The jump list is a record of most
movement commands that skip over multiple lines. It records the position of the cursor before
each jump. {Vim}

hide | 399

www.it-ebooks.info

http://www.it-ebooks.info/


k
[address] k char

Same as mark; see mark later in this list.

left
[address] le [count]

Left-align lines specified by address, or current line if no address is specified. Indent lines by
count spaces. {Vim}

list
[address] l [count]

Print the specified lines so that tabs display as ^I and the ends of lines display as $. l is like a
temporary version of :set list.

map
map[!] [string commands]

Define a keyboard macro named string as the specified sequence of commands. string is usually
a single character or the sequence #num, the latter representing a function key on the keyboard.
Use a ! to create a macro for input mode. With no arguments, list the currently defined macros.

Examples
:map K dwwP            Transpose two words
:map q :w^M:n^M        Write current file; go to next
:map! + ^[bi(^[ea)     Enclose previous word in parentheses

Vim has K and q commands, which the example aliases would hide.

mark
[address] ma char

Mark the specified line with char, a single lowercase letter. Same as k. Return later to the line
with 'x (apostrophe plus x, where x is the same as char). Vim also uses uppercase and numeric
characters for marks. Lowercase letters work the same as in vi. Uppercase letters are

400 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


associated with filenames and can be used between multiple files. Numbered marks, however,
are maintained in a special viminfo file and cannot be set using this command.

marks
marks [chars]

Print list of marks specified by chars, or all current marks if no chars specified. {Vim}

Example
:marks abc     Print marks a, b, and c

mkexrc
mk[!] file

Create an .exrc file containing set commands for changed ex options and key mappings. This
saves the current option settings, allowing you to restore them later. {Vim}

move
[address] m destination

Move the lines specified by address to the destination address.

Example
:.,/Note/m /END/    Move text block to after line containing “END”

new
[count] new

Create a new window count lines high with an empty buffer. {Vim}

next
n[!] [[+num] filelist]

Edit the next file from the command-line argument list. Use args to list these files. If filelist is
provided, replace the current argument list with filelist and begin editing on the first file. With
the +num argument, begin editing on line num. Alternatively, num may be a pattern, of the
form /pattern.

marks | 401

www.it-ebooks.info

http://www.it-ebooks.info/


Example
:n chap*            Start editing all “chapter” files

nohlsearch
noh

Temporarily stop highlighting all matches to a search when using the hlsearch option. High-
lighting is resumed with the next search. {Vim}

number
[address] nu [count]

Print each line specified by address, preceded by its buffer line number. Use # as an alternate
abbreviation for number. count specifies the number of lines to show, starting with address.

only
on [!]

Make the current window be the only one on the screen. Windows open on modified buffers
are not removed from the screen (hidden), unless you also use the ! character. {Vim}

open
[address] o [/pattern/]

Enter open mode (vi) at the lines specified by address, or at the lines matching pattern. Exit
open mode with Q. Open mode lets you use the regular vi commands, but only one line at a
time. It can be useful on slow dial-up lines (or on very distant Internet ssh connections).

preserve
pre

Save the current editor buffer as though the system were about to crash.

previous
prev[!]

Edit the previous file from the command-line argument list. {Vim}

402 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


print
[address] p [count]

Print the lines specified by address. count specifies the number of lines to print, starting with
address. P is another abbreviation.

Example
:100;+5p                Show line 100 and the next 5 lines

put
[address] pu [char]

Place previously deleted or yanked lines from the named register specified by char, to the line
specified by address. If char is not specified, the last deleted or yanked text is restored.

qall
qa[!]

Close all windows and terminate the current editing session. Use ! to discard changes made
since the last save. {Vim}

quit
q[!]

Terminate the current editing session. Use ! to discard changes made since the last save. If
the editing session includes additional files in the argument list that were never accessed, quit
by typing q! or by typing q twice. Vim closes the editing window only if there are still other
windows open on the screen.

read
[address] r filename

Copy the text of filename after the line specified by address. If filename is not specified, the
current filename is used.

Example
:0r $HOME/data        Read file in at top of current file

print | 403

www.it-ebooks.info

http://www.it-ebooks.info/


read
[address] r !command

Read the output of shell command into the text after the line specified by address.

Example
:$r !spell %        Place results of spellchecking at end of file

recover
rec [file]

Recover file from the system save area.

redo
red

Restore last undone change. Same as CTRL-R . {Vim}

resize
res [[±]num]

Resize current window to be num lines high. If + or - is specified, increase or decrease the
current window height by num lines. {Vim}

rewind
rew[!]

Rewind the argument list and begin editing the first file in the list. Add a ! to rewind even if
the current file has not been saved since the last change.

right
[address] ri [width]

Right-align lines specified by address, or current line if no address is specified, to column
width. Use textwidth option if no width is specified. {Vim}

404 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


sbnext
[count] sbn [count]

Split the current window and begin editing the count next buffer from the buffer list. If no
count is specified, edit the next buffer in the buffer list. {Vim}

sbuffer
[num] sb [num]

Split the current window and begin editing buffer num from the buffer list in the new window.
The buffer to be edited may also be specified by filename. If no buffer is specified, open the
current buffer in the new window. {Vim}

set
se parameter1 parameter2 ...

Set a value to an option with each parameter, or if no parameter is supplied, print all options
that have been changed from their defaults. For Boolean options, each parameter can be
phrased as option or nooption; other options can be assigned with the syntax option=value.
Specify all to list current settings. The form set option? displays the value of option. See the
tables that list set options in Appendix B.

Examples
:set nows wm=10
:set all

shell
sh

Create a new shell. Resume editing when the shell terminates.

snext
[count] sn [[+num] filelist]

Split the current window and begin editing the next file from the command-line argument
list. If count is provided, edit the count next file. If filelist is provided, replace the current
argument list with filelist and begin editing the first file. With the +n argument, begin editing
on line num. Alternately, num may be a pattern of the form /pattern. {Vim}

sbnext | 405

www.it-ebooks.info

http://www.it-ebooks.info/


source
so file

Read (source) and execute ex commands from file.

Example
:so $HOME/.exrc

split
[count] sp [+num] [filename]

Split the current window and load filename in the new window, or the same buffer in both
windows if no file is specified. Make the new window count lines high, or if count is not
specified, split the window into equal parts. With the +n argument, begin editing on line num.
num may also be a pattern of the form /pattern. {Vim}

sprevious
[count] spr [+num]

Split the current window and begin editing the previous file from the command-line argument
list in the new window. If count is specified, edit the count previous file. With the +num
argument, begin editing on line num. num may also be a pattern of the form /pattern. {Vim}

stop
st

Suspend the editing session. Same as CTRL-Z . Use the shell fg command to resume the
session.

substitute
[address] s [/pattern/replacement/] [options] [count]

Replace the first instance of pattern on each of the specified lines with replacement. If pat-
tern and replacement are omitted, repeat last substitution. count specifies the number of lines
on which to substitute, starting with address. (Spelling out the command name does not work
in Solaris vi.)

Options

c Prompt for confirmation before each change.

406 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


g Substitute all instances of pattern on each line (global).

p Print the last line on which a substitution was made.

Examples
:1,10s/yes/no/g              Substitute on first 10 lines
:%s/[Hh]ello/Hi/gc           Confirm global substitutions
:s/Fortran/\U&/ 3            Uppercase “Fortran” on next three lines
:g/^[0-9][0-9]*/s//Line &:/  For every line beginning with one or more digits, add “Line” and a 
 
colon

suspend
su

Suspend the editing session. Same as CTRL-Z . Use the shell fg command to resume the
session.

sview
[count] sv [+num] [filename]

Same as the split command, but set the readonly option for the new buffer. {Vim}

t
[address] t destination

Copy the lines included in address to the specified destination address. t is equivalent to copy.

Example
:%t$               Copy the file and add it to the end

tag
[address] ta tag

In the tags file, locate the file and line matching tag and start editing there.

Example
Run ctags, then switch to the file containing myfunction:

:!ctags *.c
:tag myfunction

suspend | 407

www.it-ebooks.info

http://www.it-ebooks.info/


tags
tags

Print list of tags in the tag stack. {Vim}

unabbreviate
una word

Remove word from the list of abbreviations.

undo
u

Reverse the changes made by the last editing command. In vi the undo command will undo
itself, redoing what you undid. Vim supports multiple levels of undo. Use redo to redo an
undone change in Vim.

unhide
[count] unh

Split screen to show one window for each active buffer in the buffer list. If specified, limit the
number of windows to count. {Vim}

unmap
unm[!] string

Remove string from the list of keyboard macros. Use ! to remove a macro for input mode.

v
[address] v/pattern/[command]

Execute command on all lines not containing pattern. If command is not specified, print all
such lines. v is equivalent to g!. See global, earlier in this list.

Example
:v/#include/d        Delete all lines except “#include” lines

408 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


version
ve

Print the editor’s current version number and date of last change.

view
vie[[+num] filename]

Same as edit, but set file to readonly. When executed in ex mode, return to normal or visual
mode. {Vim}

visual
[address] vi [type] [count]

Enter visual mode (vi) at the line specified by address. Return to ex mode with Q. type can be
one of -, ̂ , or . (see the z command, later in this section). count specifies an initial window size.

visual
vi [+num] file

Begin editing file in visual mode (vi), optionally at line num. Alternately, num may be a pattern,
of the form /pattern. {Vim}

vsplit
[count] vs [+num] [filename]

Same as the split command, but split the screen vertically. The count argument can be used
to specify a width for the new window. {Vim}

wall
wa[!]

Write all changed buffers with filenames. Add ! to force writing of any buffers marked
readonly. {Vim}

wnext
[count] wn[!] [[+num] filename]

version | 409

www.it-ebooks.info

http://www.it-ebooks.info/


Write current buffer and open next file in argument list, or the count next file if specified. If
filename is specified, edit it next. With the +num argument, begin editing on line num. num
may also be a pattern of the form /pattern. {Vim}

wq
wq[!]

Write and quit the file in one action. The file is always written. The ! flag forces the editor to
write over any current contents of file.

wqall
wqa[!]

Write all changed buffers and quit the editor. Add ! to force writing of any buffers marked
readonly. xall is another alias for this command. {Vim}

write
[address] w[!] [[>>] file]

Write lines specified by address to file, or write full contents of buffer if address is not specified.
If file is also omitted, save the contents of the buffer to the current filename. If >> file is used,
append lines to the end of the specified file. Add a ! to force the editor to write over any current
contents of file.

Examples
:1,10w name_list              Copy first 10 lines to file name_list
:50w >> name_list             Now append line 50

write
[address] w !command

Write lines specified by address to command.

Example
:1,66w !pr -h myfile | lp        Print first page of file

410 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


X
X

Prompt for an encryption key. This can be preferable to :set key, as typing the key is not
echoed to the console. To remove an encryption key, just reset the key option to an empty
value. {Vim}

xit
x

Write the file if it was changed since the last write, and then quit.

yank
[address] y [char] [count]

Place lines specified by address in named register char. Register names are the lowercase letters
a–z. Uppercase names append text to the corresponding register. If no char is given, place
lines in the general register. count specifies the number of lines to yank, starting with address.

Example
:101,200 ya a        Copy lines 100–200 to register “a”

z
[address] z [type] [count]

Print a window of text with the line specified by address at the top. count specifies the number
of lines to be displayed.

Type

+
Place specified line at the top of the window (default).

-
Place specified line at the bottom of the window.

.
Place specified line in the center of the window.

^
Print the previous window.

=
Place specified line in the center of the window and leave the current line at this line.

X | 411

www.it-ebooks.info

http://www.it-ebooks.info/


&
[address] & [options] [count]

Repeat the previous substitute (s) command. count specifies the number of lines on which to
substitute, starting with address. options are the same as for the substitute command.

Examples
:s/Overdue/Paid/        Substitute once on current line
:g/Status/&             Redo substitution on all “Status” lines

@
[address] @ [char]

Execute contents of register specified by char. If address is given, move cursor to the specified
address first. If char is @, repeat the last @ command.

=
[address] =

Print the line number of the line indicated by address. The default is the line number of the
last line.

!
[address] !command

Execute Unix command in a shell. If address is specified, use the lines contained in address as
standard input to command, and replace those lines with the output and error output. (This
is called filtering the text through the command.)

Examples
:!ls                List files in the current directory
:11,20!sort -f      Sort lines 11–20 of current file

< >
[address] < [count]
  or
[address] > [count]

Shift lines specified by address either left (<) or right (>). Only leading spaces and tabs are
added or removed when shifting lines. count specifies the number of lines to shift, starting

412 | Appendix A: The vi, ex, and Vim Editors

www.it-ebooks.info

http://www.it-ebooks.info/


with address. The shiftwidth option controls the number of columns that are shifted. Re-
peating the < or > increases the shift amount. For example, :>>> shifts three times as much as :>.

~
[address] ~ [count]

Replace the last-used regular expression (even if from a search, and not from an s command)
with the replacement pattern from the most recent s (substitute) command. This is rather
obscure; see Chapter 6 for details.

address
address
        

Print the lines specified in address.

ENTER

Print the next line in the file. (For ex only, not from the : prompt in vi.)

~ | 413

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


APPENDIX B

Setting Options

This appendix describes the important set command options for Solaris vi, nvi 1.79,
elvis 2.2, Vim 7.1, and vile 9.6.

Solaris vi Options
Table B-1 contains brief descriptions of the important set command options. In the
first column, options are listed in alphabetical order; if the option can be abbreviated,
that abbreviation is shown in parentheses. The second column shows the default setting
that vi uses unless you issue an explicit set command (either manually or in
the .exrc file). The last column describes what the option does, when enabled.

Table B-1. Solaris vi set options

Option Default Description

autoindent (ai) noai In insert mode, indents each line to the same level as the line
above or below. Use with the shiftwidth option.

autoprint (ap) ap Display changes after each editor command. (For global re-
placement, display last replacement.)

autowrite (aw) noaw Automatically write (save) the file if changed before opening
another file with :n or before giving a Unix command
with :!.

beautify (bf) nobf Ignore all control characters during input (except tab, new-
line, or form feed).

directory (dir) /tmp Names directory in which ex/vi stores buffer files. (Direc-
tory must be writable.)

edcompatible noedcompatible Remember the flags used with the most recent substitute
command (global, confirming), and use them for the next
substitute command. Despite the name, no version of ed
actually does this.

errorbells (eb) errorbells Sound bell when an error occurs.

exrc (ex) noexrc Allow the execution of .exrc files that reside outside the
user’s home directory.

415

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

flash (fp) nofp Flash the screen instead of ringing the bell.

hardtabs (ht) 8 Define boundaries for terminal hardware tabs.

ignorecase (ic) noic Disregard case during a search.

lisp nolisp Insert indents in appropriate Lisp format. ( ), { }, [[,
and ]] are modified to have meaning for Lisp.

list nolist Print tabs as ^I; mark ends of lines with $. (Use list to tell
whether end character is a tab or a space.)

magic magic Wildcard characters . (dot), * (asterisk), and [] (brackets)
have special meaning in patterns.

mesg mesg Permit system messages to display on terminal while editing
in vi.

novice nonovice Require the use of long ex command names, such as copy or
read.

number (nu) nonu Display line numbers on left of screen during editing session.

open open Allow entry to open or visual mode from ex. Although not
in Solaris vi, this option has traditionally been in vi, and
may be in your Unix’s version of vi.

optimize (opt) noopt Abolish carriage returns at the end of lines when printing
multiple lines; this speeds output on dumb terminals when
printing lines with leading whitespace (spaces or tabs).

paragraphs (para) IPLPPPQP LIpplpipbp Define paragraph delimiters for movement by { or }. The
pairs of characters in the value are the names of troff macros
that begin paragraphs.

prompt prompt Display the ex prompt (:) when vi’s Q command is given.

readonly (ro) noro Any writes (saves) of a file fail unless you use ! after the write
(works with w, ZZ, or autowrite).

redraw (re) vi redraws the screen whenever edits are made (in other
words, insert mode pushes over existing characters, and de-
leted lines immediately close up). Default depends on line
speed and terminal type. noredraw is useful at slow speeds
on a dumb terminal: deleted lines show up as @, and inser-
ted text appears to overwrite existing text until you press
ESC .

remap remap Allow nested map sequences.

report 5 Display a message on the status line whenever you make an
edit that affects at least a certain number of lines. For ex-
ample, 6dd reports the message “6 lines deleted.”

scroll [½ window] Number of lines to scroll with ^D and ^U commands.

sections (sect) SHNHH HU Define section delimiters for [[ and ]] movement. The pairs
of characters in the value are the names of troff macros that
begin sections.

shell (sh) /bin/sh Pathname of shell used for shell escape (:!) and shell com-
mand (:sh). Default value is derived from shell environment,
which varies on different systems.

416 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

shiftwidth (sw) 8 Define number of spaces in backward (^D) tabs when using
the autoindent option, and for the << and >> commands.

showmatch (sm) nosm In vi, when ) or } is entered, cursor moves briefly to match-
ing ( or {. (If no match, ring the error message bell.) Very
useful for programming.

showmode noshowmode In insert mode, display a message on the prompt line indi-
cating the type of insert you are making, for example,
“OPEN MODE” or “APPEND MODE.”

slowopen (slow) Hold off display during insert. Default depends on line
speed and terminal type.

tabstop (ts) 8 Define number of spaces that a tab indents during editing
session. (Printer still uses system tab of 8.)

taglength (tl) 0 Define number of characters that are significant for tags.
Default (zero) means that all characters are significant.

tags tags /usr/lib/tags Define pathname of files containing tags. (See the Unix
ctags command.) By default, vi searches the file tags in the
current directory and /usr/lib/tags.

tagstack tagstack Enable stacking of tag locations on a stack.

term Set terminal type.

terse noterse Display shorter error messages.

timeout (to) timeout Keyboard maps time out after 1 second.a

ttytype Set terminal type. This is just another name for term.

warn warn Display the warning message, “No write since last change.”

window (w) Show a certain number of lines of the file on the screen.
Default depends on line speed and terminal type.

wrapmargin (wm) 0 Define right margin. If greater than zero, automatically in-
serts carriage returns to break lines.

wrapscan (ws) ws Searches wrap around either end of file.

writeany (wa) nowa Allow saving to any file.

a When you have mappings of several keys (for example, :map zzz 3dw), you probably want to use
notimeout. Otherwise, you need to type zzz within one second. When you have an insert mode mapping
for a cursor key (for example, :map! ^[OB ^[ja), you should use timeout. Otherwise, vi won’t react to
ESC  until you type another key.

nvi 1.79 Options
nvi 1.79 has a total of 78 options that affect its behavior. Table B-2 summarizes the
most important ones. Most options described in Table B-1 are not repeated here.

Table B-2. nvi 1.79 set options

Option Default Description

backup A string describing a backup filename to use. The current
contents of a file are saved in this file before writing the

nvi 1.79 Options | 417

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description
new data out. A first character of N causes nvi to include
a version number at the end of the file; version numbers
are always incremented. "N%.bak" is a reasonable
example.

cdpath Environment variable 
CDPATH, or current
directory

A search path for the :cd command.

cedit  When the first character of this string is entered on the
colon command line, nvi opens a new window on the
command history that you can then edit. Hitting EN-
TER  on any given line executes that line. ESC  is a good
choice for this option. (Use ^V ^[ to enter it.)

comment nocomment If the first nonempty line begins with /*, //, or #, nvi skips
the comment text before displaying the file. This avoids
displaying long, boring legal notices.

directory (dir) Environment variable
TMPDIR, or /tmp

The directory where nvi puts its temporary files.

extended noextended Searches use egrep-style extended regular expressions.

filec  When the first character of this string is entered on the
colon command line, nvi treats the blank delimited word
in front of the cursor as if it had an * appended to it and
does shell-style filename expansion. ESC  is also a good
choice for this option. (Use ^V ^[ to enter it.) When this
character is the same as for the cedit option, command-
line editing is performed only when the character is en-
tered as the first character on the colon command line.

iclower noiclower Make all regular expression searches case-insensitive, as
long as the search pattern contains no uppercase letters.

leftright noleftright Long lines scroll the screen left to right, instead of wrap-
ping.

lock lock nvi attempts to get an exclusive lock on the file. Editing
a file that cannot be locked creates a read-only session.

octal nooctal Display unknown characters in octal, instead of in hex-
adecimal.

path A colon-separated list of directories in which nvi will look
for the file to be edited.

recdir /var/tmp/vi.recover The directory where recovery files are stored.

ruler noruler Displays the row and column of the cursor.

searchincr nosearchincr Searches are done incrementally.

secure nosecure Turn off access to external programs via text filtering
(:r!, :w!), disable the vi mode ! and ^Z commands, and
the ex mode !, shell, stop, and suspend commands. Once
set, it cannot be changed.

shellmeta ~{[*?$`'"\ When any of these characters appear in a filename argu-
ment to an ex command, the argument is expanded by
the program named by the shell option.

418 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

showmode (smd) noshowmode Display a string in the status line showing the current
mode. Display an * if the file has been modified.

sidescroll 16 The number of columns by which the screen is shifted
left or right when leftright is true.

taglength (tl) 0 Defines number of characters that are significant for tags.
Default (zero) means that all characters are significant.

tags (tag) tags /var/db/libc.tags
/sys/kern/tags

The list of possible tag files.

tildeop notildeop The ~ command takes an associated motion, not just a
preceding count.

wraplen (wl) 0 Identical to the wrapmargin option, except that it specifies
the number of characters from the left margin at which
the line will be split. The value of wrapmargin overrides
wraplen.

elvis 2.2 Options
elvis 2.2 has a total of 225 options that affect its behavior. Table B-3 summarizes the
most important ones. Most options described in Table B-1 are not repeated here.

Table B-3. elvis 2.2 set options

Option Default Description

autoiconify (aic) noautoiconify Iconify the old window when de-iconifying a new one. X11 only.

backup (bk) nobackup Make a backup file (xxx.bak) before writing the current file out
to disk.

binary (bin) The buffer’s data is not text. This option is set automatically.

boldfont (xfb) The name of the bold font. X11 only.

bufdisplay (bd) normal The default display mode for the buffer (hex, html, man, normal,
syntax, or tex).

ccprg (cp) cc ($1?$1:$2) The shell command for :cc.

directory (dir) Where to store temporary files. The default is system-dependent.

display (mode) normal The name of current display mode, set by the :display com-
mand.

elvispath (epath) A list of directories in which to search for configuration files. The
default is system-dependent.

focusnew (fn) focusnew Force keyboard focus into the new window. X11 only.

font (fnt) The name of the normal font, for the Windows and X11 inter-
faces.

gdefault (gd) nogdefault Cause the substitute command to change all instances.

home (home) $HOME The home directory for ~ in filenames.

italicfont (xfi) The name of the italic font. X11 only.

elvis 2.2 Options | 419

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

locked (lock) nolocked Make the buffer read-only and cause most commands that
would modify the buffer to fail. Usually set automatically for
read-only HTML files.

lpcolor (lpcl) nolpcl Use color when printing; for :lpr.

lpcolumns (lpcols) 80 The width of a printer page; for :lpr.

lpcrlf (lpc) nolpcrlf The printer needs CR/LF for newline in the file; for :lpr.

lpformfeed (lpff) nolpformfeed Send a form feed after the last page; for :lpr.

lpheader (lph) nolph Print a header at the top of the page; for :lpr.

lplines (lprows) 60 The length of a printer page; for :lpr.

lpout (lpo) The printer file or filter, for :lpr. A typical value might be !lpr.
The default is system-dependent.

lptype (lpt) dumb The printer type, for :lpr. The value should be one of: ps, ps2,
epson, pana, ibm, hp, cr, bs, dumb, html, or ansi.

lpwrap (lpw) lpwrap Simulate line wrap; for :lpr.

makeprg (mp) make $1 The shell command for :make.

prefersyntax (psyn) never Control use of syntax mode. Useful for HTML and manpages to
show the input instead of the formatted contents. With a value
of never, never use syntax mode. With writable, do so for writ-
able files. With local, do so for files in the current directory.
With always, always use syntax mode.

ruler (ru) noruler Display the cursor’s line and column.

security (sec) normal One of normal (standard vi behavior), safer (attempt to prevent
writing malicious scripts), or restricted (try to make elvis safe
for use as a restricted editor). In general, use the :safely com-
mand to set this; don’t do it directly.

showmarkups (smu) noshowmarkups For the man and html modes, show the markup at the cursor po-
sition, but not elsewhere.

sidescroll (ss) 0 The sideways scrolling amount. Zero mimics vi, making lines
wrap.

smartargs (sa) nosmartargs Place the arguments for a function on the screen based on a
tags file lookup after typing the function name and the func
tion character (usually a left parenthesis).

spell (sp) nospell Highlight misspelled words. This also works with programs,
based on lookups in a tags file.

taglength (tl) 0 Defines the number of characters that are significant for tags.
Default (zero) means that all characters are significant.

tags (tagpath) tags The list of possible tag files.

tagstack (tsk) tagstack Remember the origin of tag searches on a stack.

undolevels (ul) 0 The number of undoable commands. Zero mimics vi. You prob-
ably want to set this to a bigger number.

warpback (wb) nowarpback Upon exit, move the pointer back to the xterm that started
elvis. X11 only.

warpto (wt) don't How ^W ^W forces pointer movement: don't for no movement,
scrollbar moves the pointer to the scrollbar, origin moves the

420 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description
pointer to the upper left corner, and corners moves it to the cor-
ners furthest from and nearest to the current cursor position.
This forces the X display to pan, to make sure the window is
entirely onscreen.

Vim 7.1 Options
Vim 7.1 has a total of 295 (!) options that affect its behavior. Table B-4 summarizes the
most important ones. Most options described in Table B-1 are not repeated here.

The summaries in this table are by necessity very brief. Much more information about
each option may be found in the Vim online help.

Table B-4. Vim 7.1 set options

Option Default Description

autoread (ar) noautoread Detect whether a file inside Vim has been modified
externally, not by Vim, and automatically refresh
the Vim buffer with the changed version of the file.

background (bg) dark or light Vim tries to use background and foreground colors
that are appropriate to the particular terminal. The
default depends on the current terminal or win-
dowing system.

backspace (bs) 0 Control whether you can backspace over a newline
and/or over the start of insert. Values are: 0 for vi
compatibility; 1 to backspace over newlines; and 2
to backspace over the start of insert. Using a value
of 3 allows both.

backup (bk) nobackup Make a backup before overwriting a file, then leave
it around after the file has been successfully written.
To have a backup file just while the file is being
written, use the writebackup option.

backupdir (bdir) ., ~/tmp/, ~/ A list of directories for the backup file, separated
with commas. The backup file is created in the first
directory in the list where this is possible. If empty,
you cannot create a backup file. The name . (dot)
means the same directory as where the edited file is.

backupext (bex) ~ The string that is appended to a filename to make
the name of the backup file.

binary (bin) nobinary Change a number of other options to make it easier
to edit binary files. The previous values of these
options are remembered and restored when bin is
switched back off. Each buffer has its own set of
saved option values. This option should be set be-
fore editing a binary file. You can also use the -b
command-line option.

cindent (cin) nocindent Enable automatic smart C program indenting.

Vim 7.1 Options | 421

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

cinkeys (cink) 0{,0},:,0#,!^F, o,O,e A list of keys that, when typed in insert mode, cause
reindenting of the current line. Only happens if
cindent is on.

cinoptions (cino)  Affects the way cindent reindents lines in a C pro-
gram. See the online help for details.

cinwords (cinw) if, else, while, do, for,
switch

These keywords start an extra indent in the next
line when smartindent or cindent is set. For
cindent this is done only at an appropriate place
(inside {...}).

comments (com)  A comma-separated list of strings that can start a
comment line. See the online help for details.

compatible (cp) cp; nocp when a .vimrc
file is found

Makes Vim behave more like vi in too many ways
to describe here. It is on by default, to avoid sur-
prises. Having a .vimrc turns off the vi compatibil-
ity; usually this is a desirable side effect.

completeopt (cot) menu,preview A comma-separated list of options for insert mode
completion.

cpoptions (cpo) aABceFs A sequence of single character flags, each one indi-
cating a different way in which Vim will or will not
exactly mimic vi. When empty, the Vim defaults
are used. See the online help for details.

cursorcolumn (cuc) nocursorcolumn Highlight the screen column of the cursor with
CursorColumn highlighting. This is useful for lining
up text vertically. Can slow down screen display.

cursorline (cul) nocursorline Highlight the screen line of the cursor with Cursor
Row highlighting. Makes it easy to find the current
line in the edit session. Use in conjunction with
cursorcolumn for a crosshairs effect. Can slow down
screen display.

define (def) ^#\s*define A search pattern that describes macro definitions.
The default value is for C programs. For C++, use
^\(#\s*define\ |[a-z]*\s*const\s*[a-z]*\).
When using the :set command, you need to double
the backslashes.

directory (dir) ., ~/tmp, /tmp A list of directory names for the swap file, separated
with commas. The swap file will be created in the
first directory where this is possible. If empty, no
swap file will be used and recovery is impossible!
The name . (dot) means to put the swap file in the
same directory as the edited file. Using . first in the
list is recommended so that editing the same file
twice will result in a warning.

equalprg (ep)  External program to use for = command. When this
option is empty, the internal formatting functions
are used.

errorfile (ef) errors.err Name of the error file for the quickfix mode. When
the -q command-line argument is used, errorfile
is set to the following argument.

422 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

errorformat (efm) (Too long to print) Scanf-like description of the format for the lines in
the error file.

expandtab (et) noexpandtab When inserting a tab, expand it to the appropriate
number of spaces.

fileformat (ff) unix Describes the convention to terminate lines when
reading/writing the current buffer. Possible values
are dos (CR/LF), unix (LF), and mac (CR). Vim usu-
ally sets this automatically.

fileformats (ffs) dos,unix List the line-terminating conventions that Vim tries
to apply to a file when reading. Multiple names en-
able automatic end-of-line detection when reading
a file.

formatoptions (fo) Vim default: tcq;
vi default: vt

A sequence of letters that describes how automatic
formatting is to be done. See the online help for
details.

gdefault (gd) nogdefault Cause the substitute command to change all
instances.

guifont (gfn)  A comma-separated list of fonts to try when start-
ing the GUI version of Vim.

hidden (hid) nohidden Hide the current buffer when it is unloaded from a
window, instead of abandoning it.

history (hi) Vim default: 20; vi default: 0 Control how many ex commands, search strings,
and expressions are remembered in the command
history.

hlsearch (hls) nohlsearch Highlight all matches of the most recent search
pattern.

icon noicon Vim attempts to change the name of the icon asso-
ciated with the window where it is running. Over-
ridden by the iconstring option.

iconstring  String value used for the icon name of the window.

include (inc) ^#\s*include Define a search pattern for finding include com-
mands. The default value is for C programs.

incsearch (is) noincsearch Enable incremental searching.

isfname (isf) @,48-57,/,.,-,_, +,,,$,:,~ A list of characters that can be included in file and
path names. Non-Unix systems have different de-
fault values. The @ character stands for any alpha-
betic character. It is also used in the other is XXX
options, described next.

isident (isi) @,48-57,_,192-255 A list of characters that can be included in identi-
fiers. Non-Unix systems may have different default
values.

iskeyword (isk) @,48-57,_,192-255 A list of characters that can be included in key-
words. Non-Unix systems may have different de-
fault values. Keywords are used in searching and
recognizing with many commands, such as w, [i,
and many more.

Vim 7.1 Options | 423

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

isprint (isp) @,161-255 A list of characters that can be displayed directly to
the screen. Non-Unix systems may have different
default values.

makeef (mef) /tmp/vim##.err The error file name for the :make command. Non-
Unix systems have different default values. The ##
is replaced by a number to make the name unique.

makeprg (mp) make The program to use for the :make command. % and
# in the value are expanded.

modifiable (ma) modifiable When turned off, do not allow any changes in the
buffer.

mouse  Enable the mouse in non-GUI versions of Vim. This
works for MS-DOS, Win32, QNX pterm, and
xterm. See the online help for details.

mousehide (mh) nomousehide Hide the mouse pointer during typing. Restores the
pointer when the mouse is moved.

paste nopaste Change a large number of options so that pasting
into a Vim window with a mouse does not mangle
the pasted text. Turning it off restores those options
to their previous values. See the online help for de-
tails.

ruler (ru) noruler Show the line and column number of the cursor
position.

secure nosecure Disable certain kinds of commands in the startup
file. Automatically enabled if you don’t own
the .vimrc and .exrc files.

shellpipe (sp)  The shell string to use for capturing the output
from :make into a file. The default value depends
upon the shell.

shellredir (srr)  The shell string for capturing the output of a filter
into a temporary file. The default value depends
upon the shell.

showmode (smd) Vim default: smd;
vi default: nosmd

Put a message in the status line for insert, replace,
and visual modes.

sidescroll (ss) 0 How many columns to scroll horizontally. The val-
ue zero puts the cursor in the middle of the screen.

smartcase (scs) nosmartcase Override the ignorecase option if the search pat-
tern contains uppercase characters.

spell nospell Turn on spellchecking.

suffixes *.bak,~,.o,.h,.info,.swp When multiple files match a pattern during file-
name completion, the value of this variable sets a
priority among them, in order to pick the one Vim
will use.

taglength (tl) 0 Define number of characters that are significant for
tags. Default (zero) means that all characters are
significant.

424 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

tagrelative (tr) Vim default: tr;
vi default: notr

Filenames in a tags file from another directory are
taken to be relative to the directory where the
tags file is.

tags (tag) ./tags,tags Filenames for the :tag command, separated by
spaces or commas. The leading ./ is replaced with
the full path to the current file.

tildeop (top) notildeop Make the ~ command behave like an operator.

undolevels (ul) 1000 The maximum number of changes that can be un-
done. A value of 0 means vi compatibility: one level
of undo and u undoes itself. Non-Unix systems may
have different default values.

viminfo (vi)  Read the viminfo file upon startup, and write it
upon exiting. The value is complex; it controls the
different kinds of information that Vim will store
in the file. See the online help for details.

writebackup (wb) writebackup Make a backup before overwriting a file. The back-
up is removed after the file is successfully written,
unless the backup option is also on.

vile 9.6 Options
vile 9.6 has 167 options (called “modes” in vile), which are denoted universal, buf-
fer, or window modes according to their use. There are also 101 environment varia-
bles, which are more useful in scripts than for direct user manipulation.* Not all are
available on every platform; some apply only to X11 or Win32.

Table B-5 shows the compiled-in default values for the most important of vile’s op-
tions. The initialization scripts, such as vileinit.rc, override several of those values.
Most options described in Table B-1 are not repeated here.

Table B-5. vile 9.6 set options

Option Default Description

alt-tabpos (atp) noatp Controls whether the cursor sits at the left or right end of the
whitespace representing a tab character.

animated animated Automatically updates the contents of scratch buffers when
their contents change.

autobuffer (ab) autobuffer Uses “most-recently-used” style buffering; the buffers are sor-
ted in order of use. Otherwise, buffers remain in the order in
which they were edited.

autocolor (ac) 0 Automatic syntax coloring. If set to zero, automatic syntax col-
oring is disabled. Otherwise, it should be set to a small positive

* These include variables that are set or used as a side effect of other commands. Owing to their focus on
scripting, their descriptions are also not suitable for this table since they tend to be lengthy—read the online
help for details.

vile 9.6 Options | 425

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description
integer that represents the number of milliseconds to wait for
a “quiet interval” before invoking the autocolor-hook hook.

autosave (as) noautosave Automatic file saving. Writes the file after every autosavecnt
characters of inserted text.

autosavecnt
(ascnt)

256 Specifies after how many inserted characters automatic saves
take place.

backspacelimit (bl) backspacelimit If disabled, then in insert mode you can backspace past the
point at which the insert began.

backup-style off Controls how backup files are created when writing a file. Pos-
sible values are off, .bak for DOS-style backups, and tilde for
Emacs-style hello.c~ backups under Unix.

bcolor default Sets the background color on systems that support it.

byteorder-mark
(bom)

auto Controls the check for a prefix used to distinguish different
types of UTF encoding. The default value auto tells vile to
inspect the file; specific values tell it to use that value.

check-modtime nocheck-modtime Issues a “file newer than buffer” warning if the file has changed
since it was last read or written, and prompts for confirmation.

cindent nocindent Enable C-style indentation, which helps maintain current in-
dentation level automatically during insert, like autoindent.

cindent-chars :#{}( )[] The list of characters interpreted by the cindent mode. These
include # to indent to column 1, and : to indent further, as after
a label. Listing a pair of characters that are also in fence-
pairs causes text enclosed by the pair to be further indented.

cmode off A built-in major mode for C code.

color-scheme
(cs)

default Specify by name an aggregate of fcolor, bcolor, video-attrs,
and $palette defined via the define-color-scheme command.

comment-prefix ^\s*\(\(\s*[#*>]
\)\|\(///*\)\)\+

Describes the leading part of a line that should be left alone
when reformatting comments. The default value is good for
Makefile, shell and C comments, and email.

comments ^\s*/\?\
(\s*[#*>/]\)\+/
\?\s*$

A regular expression defining commented paragraph delimit-
ers. Its purpose is to preserve paragraphs inside comments
when reformatting.

cursor-tokens regex Controls whether vile uses regular expressions or character
classes for parsing tokens from the screen for various com-
mands. This uses an enumeration: both, cclass, and regex.

dirc nodirc vile checks each name when scanning directories for filename
completion. This allows you to distinguish between directory
names and filenames in the prompt.

dos nodos Strips out the CR from CR/LF pairs when reading files, and
puts them back when writing. New buffers for nonexistent files
inherit the line style of the operating system, whatever the value
of dos.

fcolor default Sets the foreground color on systems that support it.

fence-begin /\* Regular expressions for the start and end of simple non-
nestable fences, such as C comments.fence-end \*/

426 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

fence-if ^\s*#\s*if Regular expressions marking the start, “else if”, “else”, and end
of line-oriented, nested fences, such as C-preprocessor control
lines.

fence-elif ^\s*#\s*elif\>

fence-else ^\s*#\s*else\>

fence-fi ^\s*#\s*endif\>

fence-pairs {}( )[] Each pair of characters denotes a set of “fences” that should be
matched with %.

file-encoding auto Specifies the character encoding of the buffer contents, e.g.,
one of 8bit, ascii, auto, utf-8, utf-16, or utf-32.

filtername (fn) Specifies a syntax-highlighting filter, for a given major mode.

for-buffers (fb) mixed Specifies whether globbing or regular expressions are used to
select buffer names in the for-buffers and kill-buffer
commands.

glob !echo %s Controls how wildcard characters (e.g., * and ?) are treated in
prompts for filenames. A value of off disables expansion, and
on uses the internal globber, which can handle normal shell
wildcards and ~ notation. The default value for Unix guaran-
tees compatibility with your shell.

highlight (hl) highlight Enables or disables syntax highlighting in the corresponding
buffers.

history (hi) history Logs commands from the colon command line (minibuffer) in
the [History] buffer.

horizscroll (hs) horizscroll Moving off the end of a long line shifts the whole screen side-
ways. If not set, only the current line shifts.

ignoresuffix
(is)

\(\.orig\|~\)$ Strips the given pattern from a filename before matching it for
major mode suffixes.

linewrap (lw) nolinewrap Wraps long logical lines onto multiple screen lines.

maplonger nomaplonger The map facility matches against the longest possible mapped
sequence, not the shortest.

meta-insert-bind
ings (mib)

mib Controls behavior of 8-bit characters during insert. Normally,
key bindings are operational only when in command mode;
when in insert mode, all characters are self-inserting. If this
mode is on, and a metacharacter (i.e., a character with the
eighth bit set) is typed that is bound to a function, then that
function binding will be honored and executed from within
insert mode. Any unbound metacharacters will remain self-
inserting.

mini-hilite (mh) reverse Defines the highlight attribute to use when the user toggles the
editing mode in the minibuffer.

modeline nomodeline Controls whether a vi-like mode line feature is enabled.

modelines 5 Controls the number of lines from each end of the buffer to
scan for vi-like mode lines.

overlap-matches overlap-matches Modifies the highlighting shown by visual-matches to control
whether overlapping matches are shown.

percent-crlf 50 Percentage of total lines that must end with CR/LF for vile to
automatically convert buffer’s recordseparator to crlf.

vile 9.6 Options | 427

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

percent-utf8 90 Percentage of total characters that contain embedded nulls,
making them look like UTF-16 or UTF-32 encodings. If the
file-encoding option is set to auto and the match is higher than
this threshold, vile will load the buffer data as UTF-8.

popup-choices
(pc)

delayed Controls the use of a pop-up window for help in doing com-
pletion. The value is either off for no window, immediate for
an immediate pop up, or delayed to wait for a second Tab key.

popup-msgs (pm) nopopup-msgs When enabled, vile pops up the [Messages] buffer, showing
the text that was written to the message line.

recordseparator
(rs)

lfa Specify format of files that vile reads and writes. Formats are
lf (for Unix), crlf (for DOS), cr (for Macintosh), and
default (lf or crlf, depending on the platform).

resolve-links noresolve-links If set, vile fully resolves filenames in case some path compo-
nents are symbolic links. This helps avoid multiple uninten-
tional edits of the same physical file via different pathnames.

ruler noruler Shows the current line and column in the status line, as well as
what percentage of the current buffer’s lines are in front of the
cursor.

showchar (sc) noshowchar Shows the value of the current character in the status line.

showformat (sf) foreign Controls when/whether recordseparator information is shown
in the status line. Values are: always, differs (to show when
the local mode differs from the global), local (to show when-
ever a local mode is set), foreign (to show when the recordse
parator differs from the native default), and never.

showmode (smd) showmode Displays an indicator on the status line for insert and replace
modes.

sideways 0 Controls by how many characters the screen scrolls to the left
or right. The value of 0 moves the screen by one-third.

tabinsert (ti) tabinsert Allows the physical insertion of tab characters into the buffer.
If turned off (notabinsert), vile will never insert a tab into a
buffer; instead it will always insert the appropriate number of
spaces.

tagignorecase
(tc)

notagignorecase Makes tag searches ignore case.

taglength (tl) 0 Defines the number of characters that are significant for tags.
Default (zero) means that all characters are significant. This
does not affect tags picked up from the cursor; they are always
matched exactly. (This is different from the other editors).

tagrelative (tr) notagrelative When using a tags file in another directory, filenames in that
tags file are considered to be relative to the directory where the
tags file is.

tags tags A space-separated list of files in which to look up tag references.

tagword (tw) notagword Use the whole word under the cursor for the tag lookup, not
just the subword starting at the current cursor position.

undolimit (ul) 10 Limits how many changes may be undone. The value zero
means “no limit.”

428 | Appendix B: Setting Options

www.it-ebooks.info

http://www.it-ebooks.info/


Option Default Description

unicode-as-hex
(uh)

nounicode-as-hex If displaying a buffer whose file encoding says it is one of the
Unicode flavors (e.g., utf-8, utf-16, or utf-32), shows the val-
ues that are non-ASCII in \uXXXX format even if the display is
capable of showing these as regular characters.

unprintable-as-
octal (uo)

nounprintable-
as-octal

Displays nonprinting characters with the eighth bit set in octal.
Otherwise, uses hexadecimal. Nonprinting characters whose
eighth bit is not set are always displayed in control character
notation.

visual-matches none Controls highlighting of all matching occurrences of a search
pattern. The possible values are none for no highlighting, or
underline, bold, and reverse for those kinds of highlighting.
Colors may also be used on systems that support it.

xterm-fkeys noxterm-fkeys Supports xterm’s modified function keys by generating system
bindings for the Shift-, Ctrl-, and Alt- modifiers of each func-
tion key listed in the terminal description.

xterm-mouse noxterm-mouse Allows use of the mouse from inside an xterm. See the online
help for details.

xterm-title noxterm-title Enables title bar updates if you are running within an xterm.
Each time you switch to a different buffer, vile can update the
title. This uses the same tests of the TERM variable as the xterm-
mouse mode.

a This depends on the platform for which vile is compiled.

vile 9.6 Options | 429

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


APPENDIX C

Problem Checklists

This appendix consolidates the problem checklists that are provided throughout
Part I. Here they are presented in one place for ease of reference.

Problems Opening Files
• When you invoke vi, the message [open mode] appears.

Your terminal type is probably incorrectly identified. Quit the editing session im-
mediately by typing :q. Check the environment variable $TERM. It should be set to
the name of your terminal. Alternatively, ask your system administrator to provide
an adequate terminal type setting.

• You see one of the following messages:

  Visual needs addressable cursor or upline capability
  Bad termcap entry
  Termcap entry too long
  terminal:  Unknown terminal type
  Block device required
  Not a typewriter

Either your terminal type is undefined, or there’s probably something wrong with
your terminfo or termcap entry. Enter :q to quit. Check your $TERM environment
variable, or ask your system administrator to select a terminal type for your
environment.

• A [new file] message appears when you think a file already exists.

Check that you have used the correct case in the filename (filenames are often case-
sensitive). If you have, you are probably in the wrong directory. Enter :q to quit.
Then check to see that you are in the correct directory for that file (enter pwd at the
Unix prompt). If you are in the right directory, check the list of files in the directory
(with ls) to see whether the file exists under a slightly different name.

431

www.it-ebooks.info

http://www.it-ebooks.info/


• You invoke vi, but you get a colon prompt (indicating that you’re in ex line-editing
mode).

You probably typed an interrupt before vi could draw the screen. Enter vi by typing
vi at the ex prompt (:).

• One of the following messages appears:

  [Read only]
  File is read only
  Permission denied

“Read only” means that you can only look at the file; you cannot save any changes
you make. You may have invoked vi in view mode (with view or vi -R), or you do
not have write permission for the file. See the next section, “Problems Saving Files”
on page 432.

• One of the following messages appears:

  Bad file number
  Block special file
  Character special file
  Directory
  Executable
  Non-ascii file
  file non-ASCII

The file you’ve called up to edit is not a regular text file. Type :q! to quit, then
check the file you wish to edit, perhaps with the file command.

• When you type :q because of one of the previously mentioned difficulties, this message
appears:

  No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q! to leave vi. Your changes
from this session will not be saved in the file.

Problems Saving Files
• You try to write your file, but you get one of the following messages:

  File exists
  File file exists - use w!
  [Existing file]
  File is read only

Type :w! file to overwrite the existing file, or type :w newfile to save the edited
version in a new file.

• You want to write a file, but you don’t have write permission for it. You get the message
“Permission denied.”

Use :w newfile to write out the buffer into a new file. If you have write permission
for the directory, you can use mv to replace the original version with your copy of

432 | Appendix C: Problem Checklists

www.it-ebooks.info

http://www.it-ebooks.info/


it. If you don’t have write permission for the directory, type :w pathname/file to
write out the buffer to a directory in which you do have write permission (such as
your home directory, or /tmp).

• You try to write your file, but you get a message telling you that the file system is full.

Type :!rm junkfile to delete a (large) unneeded file and free some space. (Starting
an ex command line with an exclamation point gives you access to Unix.)

Or type :!df to see whether there’s any space on another file system. If there is,
choose a directory on that file system and write your file to it with :w pathname.
(df is the Unix command to check a disk’s free space.)

• The system puts you into open mode and tells you that the file system is full.

The disk with vi’s temporary files is filled up. Type :!ls /tmp to see whether there
are any files you can remove to gain some disk space.* If there are, create a tem-
porary Unix shell from which you can remove files or issue other Unix commands.
You can create a shell by typing :sh; type CTRL-D  or exit to terminate the shell
and return to vi. (On most Unix systems, when using a job-control shell, you can
simply type CTRL-Z  to suspend vi and return to the Unix prompt; type fg to
return to vi.) Once you’ve freed up some space, write your file with :w!.

• You try to write your file, but you get a message telling you that your disk quota has
been reached.

Try to force the system to save your buffer with the ex command :pre (short
for :preserve). If that doesn’t work, look for some files to remove. Use :sh (or
CTRL-Z  if you are using a job-control system) to move out of vi and remove files.
Use CTRL-D  (or fg) to return to vi when you’re done. Then write your file
with :w!.

Problems Getting to Visual Mode
• While editing in vi, you accidentally end up in the ex editor.

A Q in the command mode of vi invokes ex. Any time you are in ex, the command
vi returns you to the vi editor.

Problems with vi Commands
• When you type commands, text jumps around on the screen and nothing works the

way it’s supposed to.

Make sure you’re not typing the J command when you mean j.

* Your vi may keep its temporary files in /usr/tmp, /var/tmp, or your current directory; you may need to poke
around a bit to figure out where exactly you’ve run out of room.

Problems Getting to Visual Mode | 433

www.it-ebooks.info

http://www.it-ebooks.info/


You may have hit the CAPS LOCK  key without noticing it. vi is case-sensitive;
that is, uppercase commands (I, A, J, etc.) are different from lowercase commands
(i, a, j), so all your commands are being interpreted not as lowercase but as up-
percase commands. Press the CAPS LOCK key again to return to lowercase, press
ESC  to ensure that you are in command mode, then type either U to restore the
last line changed or u to undo the last command. You’ll probably also have to do
some additional editing to fully restore the garbled part of your file.

Problems with Deletions
• You’ve deleted the wrong text and you want to get it back.

There are several ways to recover deleted text. If you’ve just deleted something and
you realize you want it back, simply type u to undo the last command (for example,
a dd). This works only if you haven’t given any further commands, since u undoes
only the most recent command. On the other hand, a U will restore the line to its
pristine state, the way it was before any changes were applied to it.

You can still recover a recent deletion, however, by using the p command, since
vi saves the last nine deletions in nine numbered deletion buffers. If you know, for
example, that the third deletion back is the one you want to restore, type:

"3p

to “put” the contents of buffer number 3 on the line below the cursor. This works
only for a deleted line. Words, or a portion of a line, are not saved in a buffer. If
you want to restore a deleted word or line fragment, and u won’t work, use the p
command by itself. This restores whatever you’ve last deleted.

434 | Appendix C: Problem Checklists

www.it-ebooks.info

http://www.it-ebooks.info/


APPENDIX D

vi and the Internet

Sure, vi is user friendly. It’s just particular about who it
makes friends with.

Being the “standard” Unix screen editor since at least 1980 has enshrined vi firmly in
Unix culture.

vi helped build Unix, and Unix in turn built the foundation for today’s Internet. Thus,
it was inevitable that there be at least one Internet web site devoted to vi. This appendix
describes some of the vi resources that are available for the vi connoisseur.

Where to Start
There is surely no activity with more built-in obsolescence than publishing World Wide
Web sites in a printed book. We have tried to publish URLs that we hope will have a
reasonable lifetime.

In the meantime, the “Tips” section of the elvis documentation lists interesting vi-
related web sites (that’s where we started), and the Usenet comp.editors newsgroup is
also a good place to look.

vi Web Sites
There are two primary vi-related web sites, the vi Lover’s Home Page, by Thomer M.
Gil, and the Vi Pages, by Sven Guckes. Each contains a large number of links to inter-
esting vi-related items.

The vi Lover’s Home Page
The vi Lover’s Home Page can be found at http://www.thomer.com/vi/vi.html. This site
contains the following items:

• A table of all known vi clones, with links to the source code or binary distributions

435

www.it-ebooks.info

http://www.thomer.com/vi/vi.html
http://www.it-ebooks.info/


• Links to other vi sites, including the Vi Pages, by Sven Guckes

• A large number of links to vi documentation, manuals, help, and tutorials, at a
number of different levels

• vi macros for writing HTML documents and solving the Towers of Hanoi, and
FTP sites for other macro sets

• Miscellaneous vi links: poems, a story about the “real history” of vi, vi versus
Emacs discussions, and vi coffee mugs (see the section “vi for Java Lovers” on page
437)

There are other things there, too; this makes a great starting point.

The Vi Pages
The Vi Pages can be found at http://www.vi-editor.org.* This site contains the following
items:

• A detailed comparison of options and features among different vi clones

• Screenshots of different versions of vi

• A table listing many vi clones, as well as a list with contact information (name,
address, URL) for the clones

• Pointers to several FAQ files

• Some cute quotes about vi, such as the one that opened this chapter

• Other links, including a link to the vi coffee mugs

The vi Lover’s Home Page refers to this web site as “the only Vi site on this planet better
than the one you’re looking at.” This site is also well worth checking out.

vi Powered!
One of the cuter items we found is the vi Powered logo (Figure D-1). This is a small GIF
file you can add to your personal web page to show that you used vi to create it.

Figure D-1. vi Powered!

The original home page for the vi Powered logo was http://www.abast.es/~avelle/
vi.html. That page was written in Spanish and is no longer available. The English home
page is at http://www.darryl.com/vi.shtml. Instructions for adding the logo are at http://
www.darryl.com/addlogo.html. Doing so consists of several simple steps:

* This site is mirrored at http://www.saki.com.au/mirror/vi/index.php3.

436 | Appendix D: vi and the Internet

www.it-ebooks.info

http://www.vi-editor.org
http://www.abast.es/~avelle/vi.html
http://www.abast.es/~avelle/vi.html
http://www.darryl.com/vi.shtml
http://www.darryl.com/addlogo.html
http://www.darryl.com/addlogo.html
http://www.saki.com.au/mirror/vi/index.php3
http://www.it-ebooks.info/


1. Download the logo. Enter http://www.darryl.com/vipower.gif into your (graphical)
web browser, and then save it to a file, or use a command-line web retrieval utility,
such as wget.

2. Add the following code to your web page in an appropriate place:

<A HREF="http://www.darryl.com/vi.html">
<IMG SRC="vipower.gif">
</A>

This puts the logo into your page and makes it into a hypertext link that, when
selected, will go to the vi Powered home page. You may wish to add an ALT="This
Web Page is vi Powered" attribute to the <IMG> tag, for users of nongraphical
browsers.

3. Add the following code to the <HEAD> section of your web page:

<META name="editor" content="/usr/bin/vi">

Just as the Real Programmer will eschew a WYSIWYG word processor in favor of
troff, so too will Real Webmasters eschew fancy HTML authoring tools in favor of
vi. You can use the vi Powered logo to display this fact with pride. ☺
You can find the Vim logo, in several variations, at http://www.vim.org/logos.php. A
number of Vim Powered logos for web sites are at http://www.vim.org/buttons.php.

vi for Java Lovers
Despite the title, this subsection is about the java you drink, not the Java you program
in.†

Our hypothetical Real Programmer, while using vi to write her C++ code, her troff
documentation, and her web page, undoubtedly will want a cup of coffee now and
then. She can now drink her coffee from a mug with a vi command reference printed
on it!  

When we first found vi reference mugs, they were available in sets of four from a
dedicated web site. That site seems to have disappeared. However, vi reference mugs,
T-shirts, sweatshirts, and mouse pads are now available from a different site: http://
www.cafepress.com/geekcheat/366808.

Online vi Tutorial
The two home pages we’ve mentioned have a large number of links to documentation
on vi. Of special note, though, is a nine-part online tutorial from Unix World magazine,
by Walter Zintz. The starting-off point is here: http://www.networkcomputing.com/
unixworld/tutorial/009/009.html. (The link for this has moved around; it may not be

† Still, it’s somehow fitting that Java came from Sun Microsystems, where Bill Joy—vi’s original author—is a
founder and former vice president.

vi Web Sites | 437

www.it-ebooks.info

http://www.darryl.com/vipower.gif
http://www.vim.org/logos.php
http://www.vim.org/buttons.php
http://www.cafepress.com/geekcheat/366808
http://www.cafepress.com/geekcheat/366808
http://www.networkcomputing.com/unixworld/tutorial/009/009.html
http://www.networkcomputing.com/unixworld/tutorial/009/009.html
http://www.it-ebooks.info/


up-to-date on the vi home pages, but this URL worked when we tried it early in 2008.)
The tutorial covers the following topics:

• Editor fundamentals

• Line-mode addresses

• The g (global) command

• The substitute command

• The editing environment (the set command, tags, and EXINIT and .exrc)

• Addresses and columns

• The replacement commands, r and R

• Automatic indentation

• Macros

Also available with the tutorial is an online quiz that you can use to see how well you’ve
absorbed the material in the tutorial. Or you can just try the quiz directly, to see how
well we’ve done with this book!

A Different vi Clone
Depicted in Figures D-2 through D-9 is the story of vigor, a different vi clone.

The source code for vigor is available at http://vigor.sourceforge.net.

Amaze Your Friends!
In the long term, perhaps the most useful items are in the collection of vi-related in-
formation in the FTP archives at alf.uib.no. The original archives were at ftp://afl.uib.no/
pub/vi. This site has gone away, but you can find the archives mirrored at ftp://ftp.uu.net/

Figure D-2. The story of vigor—part I

438 | Appendix D: vi and the Internet

www.it-ebooks.info

http://vigor.sourceforge.net
ftp://afl.uib.no/pub/vi
ftp://afl.uib.no/pub/vi
ftp://ftp.uu.net/pub/text-processing/vi
http://www.it-ebooks.info/


pub/text-processing/vi.‡ The file INDEX in that directory describes what’s in the archives
and lists additional mirrors that may be geographically closer to you.

Unfortunately, these files were last updated in May of 1995. Fortunately, vi’s basic
functionality has not changed, and the information and macros in the archive are still
useful. The archive has four subdirectories:

docs
Documentation on vi, and also some comp.editors postings.

macros
vi macros.

comp.editors
Various materials posted to comp.editors.

Figure D-3. The story of vigor—part II

Figure D-4. The story of vigor—part III

‡ You may have better luck accessing this site with a command-line FTP client than with a web browser.

Amaze Your Friends! | 439

www.it-ebooks.info

ftp://ftp.uu.net/pub/text-processing/vi
http://www.it-ebooks.info/


programs
Source code for vi clones for various platforms (and other programs). Take things
from here with caution, as much of it is out of date.

The docs and macros are the most interesting. The docs directory has a large number of
articles and references, including beginners’ guides, explanations of bugs, quick refer-
ences, and many short “how to” kinds of articles (e.g., how to capitalize just the first
letter of a sentence in vi). There’s even a song about vi!

The macros directory has over 50 files in it that do different things. We mention just
three of them here. (Files whose names end in .Z are compressed with the Unix
compress program. They can be uncompressed with either uncompress or gunzip.)

Figure D-5. The story of vigor—part IV

Figure D-6. The story of vigor—part V

440 | Appendix D: vi and the Internet

www.it-ebooks.info

http://www.it-ebooks.info/


evi.tar.Z
An Emacs “emulator.” The idea behind it is to turn vi into a modeless editor (one
that is always in input mode, with commands done with control keys). It is actually
done with a shell script that replaces the EXINIT environment variable.

hanoi.Z
This is perhaps the most famous of the unusual uses of vi: a set of macros that
solve the Towers of Hanoi programming problem. This program simply displays
the moves; it does not actually draw the disks. For fun, we have reprinted it in the
sidebar later in this chapter.

turing.tar.Z
This program uses vi to implement an actual Turing machine! It’s rather amazing
to watch it execute the programs.

There are many, many more interesting macros, including perl and RCS modes.

Figure D-7. The story of vigor—part VI

Figure D-8. The story of vigor—part VII

Amaze Your Friends! | 441

www.it-ebooks.info

http://www.it-ebooks.info/


The Towers of Hanoi, vi Version
" From: gregm@otc.otca.oz.au (Greg McFarlane)
" Newsgroups: comp.sources.d,alt.sources,comp.editors
" Subject: VI SOLVES HANOI
" Date: 19 Feb 91 01:32:14 GMT
"
" Submitted-by: gregm@otc.otca.oz.au
" Archive-name: hanoi.vi.macros/part01
"
" Everyone seems to be writing stupid Tower of Hanoi programs.
" Well, here is the stupidest of them all: the hanoi solving
" vi macros.
"
" Save this article, unshar it, and run uudecode on
" hanoi.vi.macros.uu. This will give you the macro file
" hanoi.vi.macros.
" Then run vi (with no file: just type "vi") and type:
"     :so hanoi.vi.macros
"     g
" and watch it go.
"
" The default height of the tower is 7 but can be easily changed
" by editing the macro file.
"
" The disks aren't actually shown in this version, only numbers
" representing each disk, but I believe it is possible to write
" some macros to show the disks moving about as well. Any takers?
"
" (For maze solving macros, see alt.sources or comp.editors)
"
" Greg
"
" ------------ REAL FILE STARTS HERE ---------------
set remap
set noterse
set wrapscan
" to set the height of the tower, change the digit in the following

Figure D-9. The story of vigor—part VIII

442 | Appendix D: vi and the Internet

www.it-ebooks.info

http://www.it-ebooks.info/


" two lines to the height you want (select from 1 to 9)
map t 7
map! t 7
map L 1G/t^MX/^0^M$P1GJ$An$BGC0e$X0E0F$X/T^M@f^M@h^M$A1GJ@f0l$Xn$PU
map g IL
map I KMYNOQNOSkRTV
map J /^0[^t]*$^M
map X x
map P p
map U L
map A 
map B "hyl
map C "fp
map e "fy2l
map E "hp
map F "hy2l
map K 1Go^[
map M dG
map N yy
map O p
map q tllD
map Y o0123456789Z^[0q
map Q 0iT^[
map R $rn
map S $r$
map T ko0^M0^M^M^[
map V Go/^[

Tastes Great, Less Filling
vi is [[13~^[[15~^[[15~^[[19~^[[18~^ a
muk[^[[29~^[[34~^[[26~^[[32~^ch better editor than this emacs. I know
I^[[14~'ll get flamed for this but the truth has to be
said. ^[[D^[[D^[[D^[[D ^[[D^[^[[D^[[D^[[B^
exit ^X^C quit :x :wq dang it :w:w:w :x ^C^C^Z^D

— Jesper Lauridsen from alt.religion.emacs

We can’t discuss vi as part of Unix culture without acknowledging what is perhaps the
longest running debate in the Unix community:§ vi versus Emacs.

Discussions about which is better have cropped up on comp.editors (and other news-
groups) for years and years. (This is illustrated nicely in Figure D-10.) You will find
summaries of some of these discussions in the many web sites described earlier. You
will find pointers to more recent versions on the web pages.

Some of the better arguments in favor of vi are:

• vi is available on every Unix system. If you are installing systems, or moving from
system to system, you might have to use vi anyway.

§ OK, it’s really a religious war, but we’re trying to be nice. (The other religious war, BSD versus System V,
was settled by POSIX. System V won, although BSD received significant concessions. ☺)

Tastes Great, Less Filling | 443

www.it-ebooks.info

http://www.it-ebooks.info/


• You can usually keep your fingers on the home row of the keyboard. This is a big
plus for touch typists.

• Commands are one (or sometimes two) regular characters; they are much easier
to type than all of the control and metacharacters that Emacs requires.

• vi is generally smaller and less resource-intensive than Emacs. Startup times are
appreciably faster, sometimes up to a factor of 10.

• Now that the vi clones have added features such as incremental searching, multiple
windows, and buffers, GUI interfaces, syntax highlighting and smart indenting,
and programmability via extension languages, the functional gap between the two
editors has narrowed significantly, if not disappeared entirely.

To be complete, two more items should be mentioned. First, there are actually two
versions of Emacs that are popular: the original GNU Emacs and XEmacs, which is
derived from an earlier version of GNU Emacs. Both have advantages and disadvan-
tages, and their own sets of devotees.‖

Second, although GNU Emacs has always had vi-emulation packages, they are usually
not very good. However, the “viper mode” is now reputed to be an excellent vi emu-
lation. It can serve as a bridge for learning Emacs for those who are interested in doing
so.

To conclude, always remember that you are the final judge of a program’s utility. You
should use the tools that make you the most productive, and for many tasks, vi and its
clones are excellent tools.

Figure D-10. It’s not a religious war. Really!

‖ Who undoubtedly share a joint distaste for vi! ☺

444 | Appendix D: vi and the Internet

www.it-ebooks.info

http://www.it-ebooks.info/


vi Quotes
Finally, here are some more vi quotes, courtesy of Bram Moolenaar, Vim’s author:

THEOREM: vi is perfect.

PROOF: VI in roman numerals is 6. The natural numbers less than 6 which divide 6 are
1, 2, and 3. 1 + 2 + 3 = 6. So 6 is a perfect number. Therefore, vi is perfect.

— Arthur Tateishi

A reaction from Nathan T. Oelger:

So, where does the above leave Vim? VIM in roman numerals might be: (1000 – (5 + 1))
= 994, which happens to be equal to 2*496+2. 496 is divisible by 1, 2, 4, 8, 16, 31, 62,
124, and 248 and 1+2+4+8+16+31+62+124+248 = 496. So, 496 is a perfect number.
Therefore, Vim is twice as perfect as vi, plus a couple extra bits of goodies. ☺
That is, Vim is better than perfect.

This quote seems to sum it up for the true vi lover:

To me vi is zen. To use vi is to practice zen. Every command is a koan. Profound to the
user, unintelligible to the uninitiated. You discover truth every time you use it.

— Satish Reddy

vi Quotes | 445

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Index

Symbols
! (exclamation point)

buffers, interaction with, 187
cinkeys syntax rules, 254
ex commands starting with, 11
mapping keys for insert mode, 109
overriding save warnings, 64
for Unix commands, 99, 101

# (pound sign)
for alternate filename, 67
buffers, describing, 187
meta-information, extracting, 149
show line numbers command, 59

$ (dollar sign)
cursor movement command, 17, 38
for last file line (ex), 60
marking end of change region, 20
metacharacter, 75

$MYGVIMRC variable, 220
% (percent sign)

buffers, describing, 187
for current filename, 67
every line symbol (ex), 72
matching brackets, 122
meta-information, extracting, 149
representing every line (ex), 60

& (ampersand)
metacharacter, 78
to repeat last command, 80

' (apostrophe)
'' (move to mark) command, 44, 53
marking lines (vile), 364
move to mark command, 53

(underscore), using in file names, 7

* (asterisk)
cinkeys syntax rules, 255

* (asterisk) metacharacter, 74
+ (plus sign), 377

\+ metacharacter, 169, 328, 357
buffers, describing, 187
metacharacter, 128, 312
move cursor command, 15, 38
for next file lines (ex), 60
running commands when starting vi, 48

+-- marker, as a fold placeholder, 244
+/ option, 378
+? option, 378
, (comma)

for line ranges (ex), 56, 58
repeat search command, 42

- (hyphen)
buffers, describing, 187
manual folding and, 246
move cursor command, 15, 38
for previous file lines (ex), 60

-? option (elvis), 318
-? option (vile), 345
-b option, 378
-e option, 378
-h option, 378
. (dot)

current line symbol (ex), 60
echo command and, 199
filenames and, 7
meta-information, extracting, 149
metacharacter, 74
repeat command, 28, 72
undo/redo (nvi), 314

.viminfo file, 148

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

447

www.it-ebooks.info

http://www.it-ebooks.info/


.vimrc startup file
strftime( ) function and, 197

/ (slash)
pathname separator, 7
referring to marks (vile), 364
search command, 5, 39

opening files at specific place, 48
0 (move cursor) command, 17, 38
\1, \2, ... metacharacters, 78, 170
: (colon)

:! commands and, 99
ex commands and, 57
line-editing mode, 8
meta-information, extraction, 149
using ex commands and, 5

:ls command
buffers, describing and, 187

:sball command, 189
:tmenu command, 236
:tselect command, 269
:version command, 150
:vertical command, 186
:w (write) command, 50
:w command, saving existing files, 10
:w! command overwriting files, 10
; (semicolon)

for line ranges (ex), 62
repeat search command, 42

< > (angle brackets)
<< (redirect/here document) operator, 117
>> (redirect/append) operator, 64
\< \> metacharacters, 76
matching, 122

= (equals sign)
:= (identify line) command, 59
\= metacharacter, 169, 328
buffers, describing, 187

? (question mark)
\? metacharacter, 328, 357
metacharacter, 128, 312
search command, 5, 40

@ (at sign)
@ option (vile), 345, 346
\@ metacharacter, 328

@-functions, 113
[ ] (brackets)

[[, ]] (move cursor) commands, 39
[: :] metacharacters, 77
[. .] metacharacters, 77

[= =] metacharacters, 77
metacharacters, 75

\ (backslash) metacharacter, 75, 78
\1, \2, ... metacharacters, 78, 170
\< \> metacharacters, 76
\@ metacharacter, 328
\b metacharacter, 170
\{…} metacharacter, 169, 328
\d, \D metacharacters, 358
\e metacharacter, 79, 170
\E metacharacter, 79
\= metacharacter, 169, 328
\f, \F metacharacters, 170
\i, \I metacharacters, 169
\k, \K metacharacters, 170
\n metacharacter, 78, 170
\p, \P metacharacters, 170, 358
\(...\) metacharacters, 76, 170, 357
\+ metacharacter, 169, 328, 357
\? metacharacter, 328, 357
\r metacharacter, 170
\s, \S metacharacters, 170, 357
\t metacharacter, 170
\u and \l metacharacters, 79–80
\U and \L metacharacters, 79
\| metacharacter, 169, 328, 357
\w, \W metacharacters, 358

^ (caret)
cursor movement command, 38
metacharacter, 75
representing CTRL key, xvi

(see also CTRL- commands)
within [ ] metacharacters, 76

^] command, 269
` (backquote)

`` (move to mark) command, 44, 53
marking characters (vile), 364
move to mark command, 53

{ } (braces)
\{…} metacharacter, 169, 328
{ (move cursor) command, 39
} (move cursor) command, 39
cinkeys option, 253
finding and matching, 122
folding and, 240
metacharacters, 129, 312

| (vertical bar)
alternation metacharacter, 128, 311
\| metacharacter, 169, 357

448 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


for combining ex commands, 62
cursor movement command, 38
manual folding and, 246

~ (tilde)
:~ (substitute using last search pattern)

command (ex), 80
along left screen margin, 7
case conversion command, 23
folding, 247
as last replacement text, 76
metacharacter, 79, 170

~~ (folding), toggling case, 247
( ) (parentheses)

( (move cursor) command, 39
) (move cursor) command, 39
\(...\) metacharacters, 76, 170, 357
finding and removing, 108
as grouping metacharacter, 128, 311
matching, 122

A
a (append) command, 18, 19, 386

ex, 395
A (append) command, 30, 386
-a option (elvis), 317, 320
a status flag, 187
a: Vim variable, 198
:ab (abbreviation) command (ex), 103, 395

commands in .exrc files, 97
abbreviations of commands, 103, 302
absolute line addresses, 58
absolute pathnames, 7
Acme editor, 3
“Address search hit BOTTOM without

matching pattern” message, 41
:alias command (elvis), 336
alphabetizing text blocks (example), 118
alternate .exrc files, 98
alternate filenames (#), 67
alternation, 128, 169, 311, 328, 357
:amenu command, 228
ampersand (&)

metacharacter, 78
to repeat last command, 80

angle brackets (< >)
<< (redirect/here document) operator, 117
>> (redirect/append) operator, 64
\< \> metacharacters, 76
matching, 122

apostrophe (') command
'' (move to mark) command, 44, 53
move to mark command, 53

appending text, 18, 19
from named buffers, 52
to saved files, 64

:apropos command (vile), 345
:ar command, 66, 395
archives on vi (FTP), 438
:args command, 66, 395
arity keyword (ctags), 131
arrays (Vim), 205
arrow keys, 15
ASCII characters, 287
asterisk (*), 74

cinkeys syntax rules and, 255
at sign (@)

@ option (vile), 345, 346
\@ metacharacter, 328

auto indenting, 251–259
autocmd command, 206, 211, 214
autocommands, 206–213
autoiconify option (elvis), 326
autoindent method, 251
autosave option, 50
autowrite option, 50, 99
awk data manipulation language, 120

B
:b (buffer) command, 396
b (move word) command, 17
B (move word) command, 17
-b option, 286
\b, \B metacharacters, 170
b: Vim variable, 198
background color options, 274
backquote (`)

`` (move to mark) command, 44, 53
marking characters (vile), 364
move to mark command, 53

backslash (\) (see \ (backslash) metacharacter)
Backspace key

deleting in insert mode, 14
moving with, 15

backup files, 292
backupcopy option, 292
backupdir option, 292
backupnext option, 292
backupskip option, 292

Index | 449

www.it-ebooks.info

http://www.it-ebooks.info/


backward searching, 40
“Bad file number” message, 8
“Bad termpcap entry” message, 8
:badd command, 189
:ball command, 189
:bd (bdelete) command, 396
:bdelete command, 189
beep mode, 9

(see also command mode)
beginning of line context, 253
:behave command (gvim), 222
:bfirst command, 190
:bg (hide window) command (nvi), 310
binary data, editing, 135

elvis editor, 331
nvi editor, 314
vile editor, 361

binary files, editing, 285
binary option (elvis), 331
:bind-key command, 369
black-hole registers, 149
blank parameter (sessionoptions option), 299
blinktime option (elvis), 326
block (visual) mode, 137

elvis editor, 332
vile editor, 364

“Block device required” message, 8
“Block special file” message, 8
:bmod command, 190
:bnext command, 189
:bNext command, 189
bookmarks, placing, 52
Bostic, Keith, 307
bottom-line commands, 5
:bprevious command, 189
braces ({ })

\{…} metacharacter, 169, 328
{ (move cursor) command, 39
} (move cursor) command, 39
cinkeys options and, 253
finding and matching, 122
folding and, 240
metacharacters, 129, 312

brackets ([ ])
[[, ]] (move cursor) commands, 39
[: :] metacharacters, 77
[. .] metacharacters, 77
[= =] metacharacters, 77
matching, 122

metacharacters, 75
branching undos, 296
:browse command, 331
bs values (lptype option), 339
Buettner, Kevin, 343
bufdisplay option (elvis), 338
bufdo command, 189
BufEnter autocommand, 178
buffer variables, 208
buffers, 6, 51

autowrite and autosave options, 50
commands, 188, 328

for summary, 53
copying file contents into, 65
executing contents of, 113
hidden, 188
hold buffer (metacharacters), 76, 170, 357
interaction with windows, 186–190
multiple windows, editing, 173
multiwindow editing and, 127
named buffers, 28, 51, 68

arbitrarily naming (nvi), 315
numbered buffers for deletions/yanks, 26,

51
preserving manually, 50
recovering after system failure, 50
renaming (ex), 64
special, 187

:buffers command, 186, 189, 396
buffers parameter (sessionoptions option),

299
BufLeave autocommand, 178
BufNewFile command, 206
BufRead command, 206
BufReadPost command, 206
BufReadPre command, 206
BufWrite command, 206
BufWritePre command, 206
built-in calculator, elvis, 336
:bunload command, 189

C
c (change) command, 18, 19, 386, 396

cc command, 21–22
cw command, 20–21
examples of use, 32, 47
review examples of, 42

C (change) command, 21, 386
-c option, 48, 378

450 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


elvis editor, 318
nvi editor, 308
:s command, 72
vile editor, 344

-C option, 378
c$ command, 387
C/C++ programming languages

cmode mode (vile), 370
comments, placing (example), 109

:calc command (elvis), 336
calculator, elvis, 336
capitals, changing to lowercase, 23, 79–80
Caps Lock key, 32
caret (^)

cursor movement command, 38
metacharacter, 75
representing CTRL key, xvi

(see also CTRL- commands)
within [ ] metacharacters, 76

case sensitivity, 5, 7, 32, 80
case-insensitive pattern searches, 96
of commands, 5
pattern searching, 99

case, converting, 23, 79–80
cc command, 333, 387
ccprg option (elvis), 333
cd command, 396
cedit option (nvi), 312
center command, 396
change word (cw) command, 5
changing (replacing) text, 18, 19

by characters, 22
globally, 71

confirming substitutions, 72
context sensitivity, 73
replacement-string metacharacters, 78
substitution tricks, 80

by lines, 21–22
searching and, 42
by words, 20–21

character classes, 77–78
“Character special file” message, 8
character strings, 39
characters, 33

(see also lines; text; words)
case conversions, 23, 79–80
deleting, 14, 25
marking with ` (vile), 364
matching (see metacharacters)

moving by, 15
replacing (changing) singly, 22
searching for in lines, 42
transposing, 26

cindent method, 251
cinkeys cindent option, 253
cinoptions cindent option, 253, 256
cinwords cindent option, 253, 255
class keyword (ctags), 130
clicking in elvis, 324
-client option (elvis), 323
clipboard

Windows, 237
xvile and, 354

clo (close) command, 397
clones, vi, 125–142, 140

(see also specific clone)
enhanced tags, 129–134
feature summary, 140
GUI interfaces, 127

elvis editor, 323–328, 334, 337–339
vile editor, 349–356, 349–356, 366

improvements over vi, 134–138
elvis editor, 328–332
nvi editor, 312–315
vile editor, 359–365

multiwindow editing, 126–127
elvis editor, 320–323
nvi editor, 310–311
vile editor, 347

programming assistance, 138–140
elvis editor, 332–335
vile editor, 365–368

regular expressions, 128–129
elvis editor, 328
nvi editor, 311–312
vile editor, 357–358
Vim editor, 169–171

set command options (list), 415
:close command (elvis), 322
:close[!] command, 192
cmd command, 179, 378

windo and bufdo commands, 188
cmdheight option, 185
cmode mode (vile), 370
:cnewer command, 283
:cnext command, 283
:co (copy) command (ex), 58, 397
coffee mugs with vi logo, 437

Index | 451

www.it-ebooks.info

http://www.it-ebooks.info/


:colder command, 283
collating symbols, 77
colon (:)

:! commands and, 99
ex commands and, 5, 57
line-editing mode, 8
meta-information, extracting, 149

:color command, 273
colors

GUI interfaces, 323
schemes, 195–205

colorscheme command, 195, 197, 272, 273,
274

global variables, using Vim scripts, 203
comma (,)

for line ranges (ex), 56, 58
repeat search command, 42

command completion, 135
elvis editor, 328
nvi editor, 312
vile editor, 359

command mode, 3, 9, 13, 381
gvim, using the mouse, 221
keystroke maps, 104

function keys and special keys, 110
useful examples of, 107

mode indicators, 138
command-line

history, 135
elvis editor, 328
nvi editor, 312
vile editor, 359

multiwindow initiation from, 174
options, 48, 160, 377

elvis editor, 317–318
nvi editor, 308
vile editor, 344–345

syntax, 377–380
commands, 3, 434

abbreviations of Vim, 302
auto, 206

deleting, 211–213
groups, 211

cw (change word), 5
echo, 197
ex, 10
execute, 200
i (insert), 5
saving, 103

:w command, saving edited files, 10
:w!, overwriting files, 10
window (Vim), 389
wq, saving edits, 10

comment display mode (elvis), 334
comments

in ex scripts, 119
placing markers around lines (example),

109
compatible option, 149
compiling program source code, 139

elvis editor, 333
vile editor, 365

completion commands, 260–267
completion, command-line, 135

elvis editor, 328
nvi editor, 312
vile editor, 359

conditional execution, 196
configuration files

gvim, 220
:configure command (vile), 350
confirming substitutions, 72
context-sensitive global replacement, 73
copies of files, working in buffers, 6
:copy command (ex), 58
:copy-to-clipboard command (xvile), 354
copying files into other files, 65
copying text, 27

by lines, 58
named deletion/yank buffers, 51, 68
yank-and-put, 18

numbered deletion/yank buffers, 26, 51
COSE standards, 319
countzF fold command, 242
:cprevious command, 283
cr values (lptype option), 339
cscope program, 314
ctags command (Unix), 123

Exuberant ctags program, 129–134, 314,
330

tag stacks, 131–134
elvis editor, 329
nvi editor, 313–314
Solaris vi, 124, 132–134
vile editor, 360

CTRL- commands
CTRL-A CTRL-] (next tag; vile), 360
CTRL-@, 29

452 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


CTRL-B, CTRL-F (scrolling), 36
CTRL-] (find tag), 131–134, 313, 329, 360
CTRL-^ command, 68
CTRL-D, CTRL-U (scrolling), 36
CTRL-E, CTRL-Y (scrolling), 36
CTRL-G (display line numbers), 43, 59
CTRL-L, CTRL-R (redrawing), 37
CTRL-T (find tag), 132, 313, 329
CTRL-T CTRL-X CTRL-] (next tag; vile),

360
CTRL-V, 105
CTRL-V command (elvis block mode), 332
CTRL-W commands

elvis vi-mode window commands, 322
nvi window cycle commands, 311

CTRL-X CTRL-R, CTRL-X CTRL-L (scroll;
vile), 137

CTRL-X CTRL-S, CTRL-X CTRL-R
(search; vile), 136

cursors, moving inside windows and, 180
resizing windows, 184
word completions and, 260

curdir parameter (sessionoptions option), 299
curly braces ({ })

{ (move cursor) command, 39
} (move cursor) command, 39
finding and matching, 122
metacharacters, 129, 312

current file, % for, 67
current line (ex)

. symbol for, 60
redefining, 61

cursor, moving, 14, 37
commands for, 44
to marks, 52
opening files at specific place, 48
by searching for patterns, 39, 43
by text blocks, 17, 38
xvile interface, 353

CursorMoved command, 206
CursorMoverI command, 206
customizing editing environment, 95
cut-and-paste, 18, 26

multiple windows in Vim and, 173
cw (change word) command, 5, 387
Cygwin, 263

D
d (delete) command, 18, 23

db, d$, d0 commands, 24
dd command, 24
de and dE commands, 24
df command, 43
dw command, 23
examples of use, 32, 47
with named buffers, 28, 51
numbered buffers for, 26, 51
review examples of, 42

D (delete) command, 24
:d (delete) command (ex), 58
-d option, 378
-D option, 378
d$ command, 387
\d, \D metacharacters, 358
database, switching items in (example), 90
date command (Unix), 99
dav, 290
dd (delete line) command, 248, 387
“default” command mode, 5
:delete command (ex), 58
:delete-other-windows command (vile), 347
:delete-window command (vile), 347, 348
deleting

lines, 58
parentheses (example), 108
recovering deletions, 51
text, 18, 23, 43

by characters, 14, 25
with ex editor, 61
by lines, 24
named buffers for, 28, 51, 68
numbered buffers for, 26, 51
undoing deletions, 25
by words, 23

:describe-function command (vile), 345
:describe-key command (vile), 345
df command, 11, 43, 387
dG command, 387
:di (display) command

elvis editor, 338
nvi editor, 310, 313

Dickey, Thomas, 343
dictionary option, 262
diff command, 173, 294
diff method, creating folds, 241
digraphs, 287
directories, navigating and changing, 290–292
“Directory” message, 8

Index | 453

www.it-ebooks.info

http://www.it-ebooks.info/


directory buffer, 188
“Disk quota has been reached” message, 11
:display (di) command

elvis editor, 338
nvi editor, 310, 313

display modes, elvis, 334, 337–339
:display syntax command (elvis), 334, 337–

339
dL command, 387
dn command, 387
documentation

elvis editor, 319
nvi editor, 309
vi-related archives (FTP), 438
vi-related web sites, 435
vile editor, 345

dollar sign ($)
cursor movement command, 17, 38
for last file line (ex), 60
marking end of change region, 20
metacharacter, 75

dot (.)
current line symbol (ex), 60
echo command and, 199
filenames and, 7
meta-information, extracting, 149
metacharacter, 74
repeat command, 28, 72
undo/redo (nvi), 314

double quote (XXX_DQUOTE) command, 51,
52

dt command, 387
dumb values (lptype option), 339
dw command, 387
d^ command, 387
d} command, 387

E
:e (edit file) command (ex), 67, 397

:e! command, 67
e (move cursor) command, 38
E (move cursor) command, 39
:e command, 389
\E metacharacter, 79
\e metacharacter, 79, 170
:e! ENTER command, 10
eadirection option, 185
“easy gvim” (MS Windows), 219
echo command, 197

echoing of commands, 5
Eclipse, 239
ed line editor, 3
ed text editor, 3
edcompatible option, 80
:edit command, 187
:Edit command (nvi), 310
edit commands, 387
edit-compile speedup, 139

elvis editor, 333
vile editor, 365

editing, 13–33
clone improvements over vi, 134–138, 312–

315, 328–332, 359–365
customizing editing environment, 95
ex commands on command line, 135

elvis editor, 328
nvi editor, 312
vile editor, 359

ex editor for, 58
lists of files, 108
multiple files, 65
read-only mode, 49
recovering the buffer, 50
replacing text (see replacing text)
source code, advice for, 120

indentation control, 120
matching brackets, 122
using tags, 123, 129–134

transparent for Vim, 149
using multiple windows, 126–127

elvis editor, 320–323
nvi editor, 310–311
vile editor, 347

vile editing model, 368
else blocks, 196
elseif blocks, 196
elvis (vi clone), 307, 317–341

documentation and online help, 319
extended regular expressions, 328
feature summary, 140
future of, 340
GUI interfaces for, 323–328
important command-line arguments, 317–

318
improvements over vi, 328–332
infinite undo facility, 136
initialization of, 319
interesting features, 335–340

454 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


line length, 135
mode indicators, 138
multiwindow editing, 320–323
obtaining source code, 340
print management, 338
programming assistance, 332–335
set command options (list), 419
sideways scrolling, 137
tag stacks, 329
word abbreviations, 104

“elvis ex history” buffer, 328
elvis.arf file, 338, 340
elvis.awf file, 340
elvis.brf file, 331, 339
elvis.bwf file, 340
elvis.ini script, 320
elvis.msg file, 320, 335
ELVISPATH environment variable (elvis), 320
elvispath option (elvis), 320
Emacs text editor, 3, 219

vi editor versus, 443
vile editing model, 368

END key, mapping, 111
endfunction statement, 201
ENTER command, 10
Enter key

moving with, 15, 38
newlines in insert mode, 16

enum keyword (ctags), 130
epson values (lptype option), 339
equalalways option, 185
equals sign (=)

:= (identify line) command, 59
\= metacharacter, 169, 328
buffers, describing, 187

equivalence classes, 77
:er, errlist commands (elvis), 333
erasing (see deleting)
error finder, vile, 366
errorformat option, 283
errors, compiling and checking, 279–284
ESC for command mode, 14
ESC key

command mode, entering, 9
/etc/vi.exrc file (nvi), 309
:eval command (elvis), 336
ex commands, 10, 55

combining, 62
editing on command line, 135

elvis editor, 328
nvi editor, 312
vile editor, 359

executing Unix commands, 99
line addresses, 56, 58

ranges of lines, 58, 62
line addressing

redefining current line, 61
relative addressing, 60
symbols for, 60

opening files and, 431
saving and exiting, 10, 63
saving files and, 433
tag stacking and, 268

ex line editor, 3
ex scripts, 114
ex text editor, 3, 55

basics of, 393
commands, 395–413
editing with, 58
executing buffers from, 114
filtering text with, 101
invoking on multiple files, 115
using ex commands in vi, 5

exclamation point (!)
buffers, interaction with, 187
cinkeys syntax rules, 254
ex commands starting with, 11
mapping keys for insert mode, 109
overriding save warnings, 64
for Unix commands, 99, 101

“Executable” message, 8
execute command, 200
executing text from buffers, 113
EXINIT environment variable, 96

elvis editor, 320
nvi editor, 309

“[Existing file]” message, 10
exists( ) function, 209
exiting ex (into vi), 57
exiting vi, 9, 63
expr method, creating folds, 241
expressions, 215
.exrc files, 96, 97, 309, 392

security concerning (elvis), 336
exrc option, 98, 309, 320
extended regular expressions, 128

elvis editor, 328
nvi editor, 311–312

Index | 455

www.it-ebooks.info

http://www.it-ebooks.info/


vile editor, 357–358
Vim editor, 169–171

extended tags file format, 129–134, 314, 330
extensions, 216
Exuberant ctags program, 129–134, 314, 330
:exusage command (nvi), 309

F
:f (file) command, 398
f (search line) command, 42
F (search line) command, 42
-f option (elvis), 318
-F option, 308
\f, \F metacharacters, 170
:fg (uncover window) command (nvi), 311
:Fg (uncover window) command (nvi), 311
“File exists” message, 10
“File is read only” message, 8, 10
file keyword (ctags), 130
“File system is full” message, 11
“File to load” prompt, 326
filec option (nvi), 312
files

accessing multiple, 389
copying into other files, 65
current and alternate (% and #), 67
deleting, 11
editing (see editing)
editing in other places, 289
executing ex scripts on, 114
extensions, 205
filenames, 7, 56
iterating through lists of, 108
multiwindow editing and, 174
opening, 7

multiple at once, 66, 67
previous file, 68
read-only mode, 49
at specific place, 48

problems opening, 431
quitting (see quitting vi)
reading as vi environments, 98
renaming buffer (ex), 64
saving, 432 (see saving edits)
writing (see writing the buffer)

:files command, 186, 189
FileType command, 206
filtering text through Unix commands, 100
:find-file command (vile), 348

“First address exceeds second” message, 62
first line of file

moving to, 37
firstx, firsty option (elvis), 326
fold command, 398
foldc command, 398
foldcolumn margin, 248
foldenable, setting, 250
folding, 240

manual, 243–248
foldlevel command, 249
foldo command, 398
folds parameter (sessionoptions option), 299
fonts (see GUI interfaces)
for loops, 115
formatting codes, 4
Fox, Paul, 343
Fred Fish disk 591, 146
FreeBSD, 263
FTP, 290

archives on vi, 438
function display mode (elvis), 334
function keys, mapping, 110
function keyword (ctags), 130
function statement, 201
functions

defining, 201
exists( ), 209–211
internal, 216–218
strftime, 196

G
:g (global replacement) command (ex), 73,

398
collecting lines with (example), 92
pattern-matching examples, 81
repeating commands with (example), 92
replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80

g (global) command (ex), 62
G (go to) command, 43
-g option, 238

gvim, 220
g option (:s command), 71
-G option (elvis), 318
g: Vim variable, 198
gg option, 385
gI command, 386

456 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


gJ command, 388
global replacement, 71

confirming substitutions, 72
context sensitivity, 73
examples of, 81
global pattern-matching rules, 74
pattern-matching rules

replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80

global searches (ex), 62
globals parameter (sessionoptions option),

299
glossary

converting to troff (example), 106
GNU Emacs text editor, 3
gp command, 387
gP command, 387
gqap command, 387
Graphical User Interfaces (see GUI interfaces)
Graphical Vim (see gvim)
groups (syntax highlighting), 272
:gui command, 238

elvis, 325
GUI interfaces, 148

elvis editor, 323–328
display modes, 334, 337–339

gvim, 219–237
vi clones, 127
vile editor, 349–355

guicursor option, 237
guifont option, 237
guifontset option, 237
guifontwide option, 237
guiheadroom option, 237
guioptions option, 225, 238
guitablabel option, 238
guitabtooltip option, 238
guw command, 387
gUw command, 387
gvim, 180, 219

menus, 223
mouse behavior and, 221–223
resizing windows and, 183
starting, 220
tabbed editing, 191

$GVIMINIT environment variable, 220
.gvimrc startup file, 220

arrays and, 205

colorscheme command and, 195
functions, defining, 201

gzip utility, 142
g~w command, 387

H
H (home) command, 37
h (move cursor) command, 15, 38
-h option

vile editor, 344
h status flag, 187
Haley, Chuck, 307
hash mark (see pound sign (#))
help

elvis editor, 319
nvi editor, 309
vile editor, 345

help buffer, 187
:help command, 187
:help (:h) command (vile), 345
--help option, 177
help parameter (sessionoptions option), 299
here documents, 117
hex display mode (elvis), 331, 337
hid (hide) command, 399
hidden buffers, 188
Hiebert, Darren, 129
highlight command, 274
highlight option, 272
:historical-buffer command (vile), 349
[History] buffer (vile), 359
history, command-line, 135

elvis editor, 328
nvi editor, 312
vile editor, 359

hold buffer, 76, 170, 357
home (see first line of file)
HOME key, mapping, 111
$HOME/.nexrc file (nvi), 309
horizontal scrolling, 137

elvis editor, 331
nvi editor, 315
vile editor, 363

horizontally splitting windows, 174
horizscroll option, 137
Horton, Mark, 307
hp values (lptype option), 339
HTML, 293
html display mode (elvis), 330, 337–338

Index | 457

www.it-ebooks.info

http://www.it-ebooks.info/


hyphen (-)
buffers, describing, 187
manual folding and, 246
move cursor command, 15, 38
for previous file lines (ex), 60

I
i (insert) command, 4, 14, 386, 399
I (insert) command, 30, 386
i flag (gvim mouse option), 221
-i option, 378

elvis editor, 318
\i, \I metacharacters, 169
ibm values (lptype option), 339
ic option, 80, 96
IDEs (Integrated Development Environments),

148, 239
if...then...else block, 196, 205
ignorecase option, 99
include files (C), 264
:incremental-search command (vile), 363
incremental searching, 136

nvi editor, 315
vile editor, 363

incsearch option
elvis editor, 136
Vim editor, 136

indent method, creating folds, 241
indentation, 120
indentexpr method, 251
indenting, 251–259
infinite undo facility, 136

elvis editor, 331
nvi editor, 314
vile editor, 361

initialization
elvis editor, 319
nvi editor, 309
vile editor, 346

initialization for Vim, 148
inputtab option (elvis), 329
insert (i) command, 4, 399
insert commands, 386
insert mode, 3, 9, 381

gvim, using the mouse, 221
mapping keys for, 109
mode indicators, 138
word abbreviations, 103

inserting text, 30

a (append) command, 18, 19
handling long insertions, 29, 109, 135

elvis editor, 331
nvi editor, 314
vile editor, 361

in insert mode, 14
repeating insert with CTRL-@, 29

insertion completion command, 260–267
insertion-completion capabilities, 259
Integrated Development Environments (IDEs),

148, 239
interfaces for vi clones, 127

elvis editor, 323–328
display modes, 334, 337–339

vile editor, 349–355
internal functions, 216
internationalization support

elvis editor, 335
nvi editor, 315

Internet, vi and, 435
invoking vi

command-line options, 48
on multiple files, 66

isfname option (Vim), 171
isident option (Vim), 169, 171
iskeyword option (Vim), 171, 262
isprint option (Vim), 171

J
J (join) command, 31, 388
j (move cursor) command, 15, 38
joining lines, 31
Joy, Bill, 307
ju (jump) command, 399

K
k (move cursor) command, 15, 38
\k, \K metacharacters, 170
keystrokes, remembering with :map, 104

function keys and special keys, 110
useful examples of, 107

keyword completion, 149, 259–268
keyword display mode (elvis), 334
kill ring (see deleting text, buffers for)
kind keyword (ctags), 130
Kirkendall, Steve, 317

458 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


L
L (last line) command, 37
l (move cursor) command, 15, 38
\l metacharacter, 79–80
\L metacharacter, 79
-l option, 378
-L option, 378
l: Vim variable, 198
:last command (elvis, Vim), 67
last line of file

$ symbol for (ex), 60
moving to, 37

LaTeX formatter, 4
left/right scrolling, 137

elvis editor, 331
nvi editor, 315
vile editor, 363

leftright option (nvi), 137, 315
:let command, 209
line editors, 3
line numbers, 17

displaying, 43, 59
in ex commands, 56, 58

ranges of lines, 58, 62
redefining current line, 61
relative addressing, 60
symbols for, 60

moving by, 43
opening files at specific, 48

line-editing mode, 8
lines, 33

(see also characters; text; words)
case conversions, 23
collecting with :g command, 92
deleting by, 24

undoing deletions, 25
ex commands for, 58
joining, 31
length limitations, 109, 135

elvis editor, 331
nvi editor, 314
vile editor, 361

marking with ' (vile), 364
moving by, 17, 38
moving to specific, 37, 43
moving within, 16
opening files at specific, 48
placing C/C++ comments around

(example), 109

printing, 56
replacing (changing), 20, 21–22
searching within, 42
to start/end of (see words)
visible on screen, option for, 96
yanking, 27

linewrap option (vile), 137
Linux, getting Vim for, 151–156
:loadview command, 241
local .exrc files, 98, 309
localoptions parameter (sessionoptions

option), 299
long insertions, 29, 109, 135

elvis editor, 331
nvi editor, 314
vile editor, 361

loops in shell scripts, 115
lowercase, converting to uppercase, 23, 79
lpc, lpcrlf options (elvis), 338
lpcolor option (elvis), 339
lpcolumns option (elvis), 339
lpcontrast option (elvis), 339
lpconvert option (elvis), 338
lpff, lpformfeed options (elvis), 339
lplines option (elvis), 339
lpo, lpout options (elvis), 338
lpopt, lpoptions options (elvis), 339
:lpr command (elvis), 338
lprows option (elvis), 339
lptype option (elvis), 338
lpw, lpwrap options (elvis), 339
:ls command, 186

buffers, using, 189

M
m (mark place) command, 52
M (middle line) command, 37
:m (move) command (ex), 58
-m option, 378
-M option, 378
Mac OS X, installing Vim, 151
macros, 390
magic option, 99
major modes, vile, 370
Make button (elvis), 325
:make command (elvis), 325, 333
make program, 279
makeprg option, 283

elvis editor, 333

Index | 459

www.it-ebooks.info

http://www.it-ebooks.info/


man display mode (elvis), 337–338
manual folding, 243–248
manual method, creating folds, 241
:map command (ex), 104, 400

commands in .exrc files, 97
useful examples of, 107

maps, 104
function keys and special keys, 110
for insert mode, 109
named buffer contents as, 113
useful examples of, 107

margins
repeating long insertions, 29
setting, 16

marker method, creating folds, 241
marking your place, 52
marks (vile visual mode), 364
matching brackets, 122
:menu command, 228, 238

toolbars, 234
menu support for xvile, 355
menus, using gvim, 223, 226–233

customizing, 231
meta-information, 149
metacharacters, 74

extended regular expressions, 128–129
elvis editor, 328
nvi editor, 311–312
vile editor, 357–358
Vim editor, 169–171

Microsoft Windows (see MS Windows)
middle line, moving to, 37
mini-hilite option (vile), 359
minus sign (see hyphen)
mksession command, 298
:mkview command, 241
mode indicators (vi clones), 138
:modeline-format command (vile), 373
modeline option, 286
modes, 9
Moolenaar, Bram, 145, 445
Morgan, Clark, 343
Mortice Kern Systems, 120
mouse behavior

elvis editor, 324
gvim, 221–223

:move command (ex), 58
:move-next-window-down command (vile),

348

:move-next-window-up command (vile), 348
:move-window-left command (vile), 348
:move-window-right command (vile), 348
movement commands, 383
moving

among multiple files, 66
lines, 58
switching database items (example), 90
text (delete-and-put), 18

numbered deletion/yank buffers, 26, 51
text blocks by patterns, 82

moving the cursor, 14, 37
commands for, 44
to marks, 52
opening files at specific place, 48
by searching for patterns, 39, 43
by text blocks, 17, 38
xvile interface, 353

MS Windows, using gvim, 219, 236
mugs with vi logo, 437
multiwindow editing, 126–127

elvis editor, 320–323
initiation, 174–177
nvi editor, 310–311
vile editor, 347
Vim editor, 173–193

N
:n (next file) command (ex), 66
n (search again) command, 40, 72
N (search again) command, 40
n flag (mouse option), 222
\n metacharacter, 170
-N option, 379

vile editor, 345
-n option, 378
named buffers, 28, 51, 68

arbitrarily naming (nvi), 315
executing contents of, 113

nested folds, 240
:new command, 178, 389, 401

elvis, 321
“[new file]” message, 8
newline characters, 16, 136
NEXINIT environment variable, 309
.nexrc file (nvi), 309
:Next command (nvi), 311
:next-tag command (vile), 360
:next-window command (vile), 348

460 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


:no (:normal) command (elvis), 337, 338
“No Toolkit” vile interface, 349
“No write since last change” message, 9, 63
noexpandtab option, 286
noh command, 402
noignorecase option, 99
nolinewrap option (vile), 363
nomagic option, 99
non-ASCII characters, 287
“Non-ascii file” message, 8
nonu (nonumber) option, 59
--noplugin option, 379
:normal (:no) command (elvis), 337, 338
normal display mode (elvis), 337
normal mode (gvim), 222
“Not a typewriter” message, 8
notagstack option (elvis), 330
nowrap option, 300

elvis editor, 331
nowrapscan option, 41, 99
nroff formatting package, 4
nu option, 17, 43, 402
num command, 387
numbered deletions/yanks buffers, 26, 51
numbers for lines (see line numbers)
numeric arguments for commands, 16, 31
nvi (vi clone), 307–316

documentation and online help, 309
extended regular expressions, 128, 311–

312
feature summary, 140
important command-line arguments, 308
improvements over vi, 312–315
infinite undo facility, 136
initialization of, 309
interesting features, 315
line length, 135
mode indicators, 138
multiwindow editing, 310–311
obtaining source code, 315
set command options (list), 417
sideways scrolling, 137
tag stacks, 313–314
word abbreviations, 104

O
o (open line) command, 30, 386
O (open line) command, 30, 386
-o option, 379

elvis editor, 318
-O option, 379
obtaining source code

elvis editor, 340
nvi editor, 315
vile editor, 374

“one line” command, 247
online help

elvis editor, 319
nvi editor, 309
vi tutorial, 437
vile editor, 345

“[open mode]” message, 8
open mode (elvis), 336
opening files

multiple files at once, 66, 67
previous file, 68
read-only mode, 49
at specific place, 48

options parameter (sessionoptions option),
299

options, set command, 96
(see also :set command)
list, 415
viewing current, 96

options, vi command, 48
other display mode (elvis), 334
outline mode, 240–251, 248
output (Unix), reading into files, 100
overstrike mode, 22

P
:p (print) command (ex), 56, 403
p (put) command, 18, 25, 26

with named buffers, 28, 51, 68
P (put) command, 26

with named buffers, 28, 51, 68
:p (put) command (ex), 69
\p, \P metacharacters, 170, 358
PAGE UP, PAGE DOWN keys, mapping, 111
pana values (lptype option), 339
paragraphs

delimiters for, 39
moving by, 39

parentheses ( )
( (move cursor) command, 39
) (move cursor) command, 39
\(...\) metacharacters, 76, 170, 357
finding and removing, 108

Index | 461

www.it-ebooks.info

http://www.it-ebooks.info/


as grouping metacharacter, 128, 311
matching, 122

parts of files, saving, 64
:paste-to-clipboard command (xvile), 354
PATH environment variable, installing Vim,

150
“Pattern not found” message, 40
pattern searching, 39

configuration options for, 99
ex commands for, 61, 62
global pattern-matching rules, 74

examples, 81
replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80

incremental searching (vi clones), 136
nvi editor, 315
vile editor, 363

making case-insensitive, 96
matching brackets, 122
opening files at specific place, 48
replacing text and (see replacing text)
within lines, 42
wrapping searches, 40, 41

percent sign (%)
buffers, describing, 187
for current filename, 67
every line symbol (ex), 72
matching brackets, 122
meta-information, extracting, 149
representing every line (ex), 60

period (.) (see dot)
current line symbol (ex), 60
metacharacter, 74
repeat command, 28, 72

“Permission denied” message, 8, 10
pin-tagstack option (vile), 360
pipe (|) (see vertical bar)
piping into vile, 373
place marking, 52
plug-ins for Vim, 148
plus sign (+), 377

\+ metacharacter, 169, 328, 357
buffers, describing, 187
metacharacter, 128, 312
move cursor command, 15, 38
for next file lines (ex), 60
running commands when starting vi, 48

:po command (Solaris vi), 132

:pop (:po) command
elvis editor, 329
vile editor, 360

:position-window command (vile), 348
POSIX standards, 147
post-read, post-write files (elvis), 320, 339
postprocessing (Vim), 149
pound sign (#)

for alternate filename, 67
buffers, describing, 187
meta-information, extracting, 149
show line numbers command, 59

:pre command, 402
ex, 11, 50

pre-read, pre-write files (elvis), 320, 339
prep display mode (elvis), 334
prev command, 402
:Previous command (nvi), 311
previous file, switching to, 68
:previous-window command (vile), 348
printing

elvis print management, 338
lines, 56

procedure language, vile, 372
programming assistance, 138–140, 239–284

edit-compile speedup, 139
elvis editor, 333
vile editor, 365

elvis editor, 332–335
source code editing, 120

indentation control, 120
matching brackets, 122
using tags, 123

syntax highlighting, 140
elvis display modes, 334, 337–339
vile editor, 366

using tags, 129–134
vile editor, 365–368
Vim editor, 148

prompt line, 7
ps, ps2 values (lptype option), 339
:pu (put) command, 403
putting text, 18

deleting and (cut-and-paste), 26
from named buffers, 28, 51, 68
yanking and (copy-and-paste), 27

Q
:q (quit) command (ex), 10, 63

462 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


:q! command, 64
Q command, 57
:q (quoted motion) command (vile), 364
:q! command, 10, 380

quitting, 9
qa command, 403
:qall command (elvis), 322
question mark (?)

\? metacharacter, 328, 357
metacharacter, 128, 312
search command, 5, 40

quickfix buffer, 187
Quickfix List window, 279
quipty option, 238
Quit button (elvis), 326
:quit command, 192
quitting vi, 63
XXX_DQUOTE (yank from buffer) command,

51, 52
quote (XXX_DQUOTE) command, 51, 52
quoted motion (q) command (vile), 364
quotes about vi, 445

R
:r (read) command (ex), 65, 403
r (replace character) command, 22, 31
R (replace character) command, 22, 30, 386
\r metacharacter, 170
-R option, 49, 50, 379

vile editor, 344
-r option, 50

elvis editor, 318
nvi editor, 308

range of lines, 58, 62
rcp (remote copy), 290
:read command (ex), 65

reading Unix command output, 100
read-hook option (vile), 373
“Read Only” files, 432
“[Read only]” message, 8
read-only mode, 49
read-only registers (Vim), 149
rec command, 404
recovering deletions, 25, 51
recovering the buffer, 50
red command, 404
redrawing screen, 37
reformatting text (vile), 373
regular expressions, 74, 128–129

elvis editor, 328
metacharacters

in replacement strings, 78
in search patterns, 74
substitution tricks, 80

nvi editor, 311–312
pattern-matching examples, 81
vile editor, 357–358
Vim editor, 169–171

relative line addressing (ex), 60
relative pathnames, 7
renaming buffer (ex), 64
repeating commands, 28–29

:g command for (example), 92
global substitutions, 80
pattern searches, 40, 42
searching numbered buffers, 51

replacing text, 18, 19
by characters, 22
globally, 71

confirming substitutions, 72
context sensitivity, 73
replacement-string metacharacters, 78
substitution tricks, 80

by lines, 21–22
searching and, 42
by words, 20–21

repositioning screen, 36
res command, 404
:resize command, 184

nvi, 311
resize parameter (sessionoptions option), 299
:resize-window command (vile), 348
:restore-window command (vile), 348
:reverse-incremental-search command (vile),

363
rew command, 404
:rew, :rewind commands (ex), 67
right margin, setting, 16
right/left scrolling, 137

elvis editor, 331
nvi editor, 315
vile editor, 363

rm command (Unix), 11
ruler option, 138

S
s (substitute) command, 22, 30–31, 386
S (substitute) command, 22, 30–31, 386

Index | 463

www.it-ebooks.info

http://www.it-ebooks.info/


s (substitute) command (ex), 56, 71–72
context-sensitive replacement, 73
pattern-matching examples, 81
replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80
vile editor, 369

-s option, 379
elvis editor, 318
nvi editor, 308
vile editor, 345

-S option, 379
-SS option (elvis), 318
\s, \S metacharacters, 170, 357
s: Vim variable, 198
:safely command (elvis), 336
:sall (:sa) command (elvis), 321
sam editor, 3
:save-window command (vile), 348
saving commands, 103
saving edits, 9, 63, 388

appending to saved files, 64
iterating through list of files, 108
preserving the buffer, 50
saving parts of files, 64

sb command, 405
:sbfirst command, 190
:sbmod command, 190
sbn command, 405
:sbnext command, 189
:sbNext command, 189
:sbprevious command, 189
:sbuffer command, 189
scope keyword (ctags), 131
scp (secure remote copy over SSH), 290
scratch buffer, 188
screen editors, 3
screens

left/right scrolling, 137
elvis editor, 331
nvi editor, 315
vile editor, 363

moving cursor (see moving the cursor)
multiwindow editing, 126–127

elvis editor, 320–323
nvi editor, 310–311
vile editor, 347

redrawing, 37
repositioning, 36

scrolling, 35
setting number of lines shown, 96

scripting for Vim, 148
scripts

ex, 114
Vim, 195–218

:scroll-next-window-down command (vile),
348

:scroll-next-window-up command (vile), 349
scrollbars, 225

gvim, 225
xvile, 352

scrolling, 35
without moving cursor, 36

scrolling right/left, 137
elvis editor, 331
nvi editor, 315
vile editor, 363

se command, 405
searchincr option (nvi), 136, 315, 363
searching

for class of words, 82
metacharacters for, 74

searching for patterns, 39
configuration options for, 99
ex commands for, 61, 62
global pattern-matching rules, 74

examples, 81
replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80

incremental searching (vi clones), 136
nvi editor, 315
vile editor, 363

making case-insensitive, 96
matching brackets, 122
opening files at specific place, 48
replacing text and (see replacing text)
within lines, 42
wrapping searches, 40, 41

searching numbered buffers, 51
sections, moving by, 39
security, elvis, 336
sed stream editor, 120
select mode (gvim), 222
selecting text with xvile, 353
semicolon (;)

for line ranges (ex), 62
repeat search command, 42

464 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


sentences
delimiters for, 39
moving by, 39

sesdir parameter (sessionoptions option), 299
session context for Vim, 148
session files, elvis, 319
sessionoptions option, 299
sessions (Vim), 173
:set command, 149, 392

commands in .exrc files, 97
ex, 96

list of options for, 415
viewing current options, 96

mouse options and, 222
:set-window command (vile), 349
:sfind command, 179
sftp (secure FTP), 290
:sh (create shell) command (ex), 99
:sh command (ex), 11, 405
shell, Unix, 99
shiftwidth, using outline modes, 248
shmode mode (vile; example), 370
:show-history command (vile), 359
:show-tagstack command (vile), 360
:show-commands command (vile), 345
showmode option, 138
:shrink-window command (vile), 349
sidescroll option (nvi), 315
sidescroll value, 137, 331
sidescrolloff option, 301
sideways scrolling, 137

elvis editor, 331
nvi editor, 315
vile editor, 363

slash (/)
pathname separator, 7
referring to marks (vile), 364
search command, 5, 39

opening files at specific place, 48
slash parameter (sessionoptions option), 299
:slast (:sl) command (elvis), 321
smart indenting, 251–259
smartindent method, 251
sn command, 405
:snew (:sne) command (elvis), 321
:sNext (:sN) command (elvis), 321
:so command (ex), 98
Solaris vi

set command options (list), 415

tag stacks, 124, 132–134
word abbreviations, 104

sort command (Unix), 100
sorting

text blocks (example), 118
source code editing, 120

indentation control, 120
matching brackets, 122
using tags, 123, 129–134

sourced, finding startup files, 220
sp command, 406
spaces (see whitespace)
special buffers, 187
spellchecking, 4
Split button (elvis), 326
:split command, 175

buffers, using, 186
elvis, 321
opening new windows, 177
vile, 347

:split-current-window command (vile), 347,
349

split windows (see multiwindow editing)
spr command, 406
:srewind (:sre) command (elvis), 321
st command, 406
:stack (:stac) command (elvis), 329
stacks, tags, 131–134

elvis editor, 329
nvi editor, 313–314
Solaris vi, 124, 132–134
vile editor, 360

:stag (:sta) command (elvis), 321
:stag[!] tag, 190
starting vi (see invoking vi)
state transitions for Vim, 149
status line (see prompt line)
status-line commands, 382
statusline option, 202
stevie editor, 146, 317
stopshell option (elvis), 327
strftime( ) function, 196
string display mode (elvis), 334
struct keyword (ctags), 130
sts command, 268
stty command, 6
su command, 407
substitute (:s) command (ex), 56, 71–72

context-sensitive replacement, 73

Index | 465

www.it-ebooks.info

http://www.it-ebooks.info/


pattern-matching examples, 81
replacement-string metacharacters, 78
search-pattern metacharacters, 74
substitution tricks, 80
vile editor, 369

substituting text (see changing text)
:sunhide command, 189
sv command, 407
:sview command, 179
switching database items (example), 90
switching words (example), 105, 107
:syntax command, 270
syntax display mode (elvis), 337
syntax extensions for Vim, 148
syntax files, 275
syntax folding method, 249
syntax highlighting, 140, 270–279

customizing, 271
elvis display modes, 334, 337–339
vile editor, 366

syntax method, creating folds, 241
system failure, recovering after, 50

T
:t (copy) command (ex), 58
t (search line) command, 42
T (search line) command, 42
^T command, 269
\t metacharacter, 170
-t option, 379

elvis editor, 318
nvi editor, 308
vile editor, 344

-T option, 379
t: Vim variable, 198
:Ta, Tag commands (nvi), 311, 313
ta, tag commands (nvi), 313
:ta, tag commands (Solaris vi), 132
<TAB>, using menu entries, 230
:tabclose command, 191
:tabnew command, 191
:tabonly command, 191
tabpages parameter (sessionoptions option),

299
tabs, editing, 191
:tag (:ta) command

elvis editor, 329
vile editor, 360

:tag command, 131–134, 330

:tag command (ex), 123
tag stacks, 131–134, 268–270

elvis editor, 329
nvi editor, 313–314
Solaris vi, 124, 132–134
vile editor, 360

tag windowing commands, 190
tagignorecase option (vile), 360
taglength option, 313

elvis editor, 330
Solaris vi, 132
vile editor, 360

:tagp, tagpop commands (nvi), 313
tagpath option

elvis editor, 330
Solaris vi, 132

tagprg option (elvis), 331
tagrelative option (vile), 360
:tags command (Solaris vi), 134
tags file format, 130–131, 314
tags option

elvis editor, 330
nvi editor, 313
Solaris vi, 132
vile editor, 361

tagstack option
elvis editor, 330
Solaris vi, 132

:tagt, tagtop commands (nvi), 313
tagword option (vile), 361
TERM environment variable, 6, 8

opening files and, 431
termcap entries, 8, 95
“Termcap entry too long” message, 8
termcap library, 6
terminal type, 8
terminfo entries, 8, 95
terminfo library, 6
tex display mode (elvis), 337–338
Tex formatter, 4
text, 33

(see also characters; lines; words)
case conversions, 23, 79–80
copying (yank-and-put), 18, 27
deleting, 18, 23, 43

by characters, 14, 25
with ex editor, 61
by lines, 24
named buffers for, 28, 51, 68

466 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


numbered buffers for, 26, 51
recovering deletions, 51
undoing deletions, 25
by words, 23

filtering through Unix commands, 100
finding and deleting parentheses, 108
indentation control, 120
inserting, 30

a (append) command, 18, 19
handling long insertions, 29, 109, 135,

314, 331, 361
in insert mode, 9, 14

moving, 26
switching database items (example), 90

moving (delete-and-put), 18
reformatting (vile), 373
replacing (changing), 18, 19, 42

globally, 71
searching for (see pattern searching)
transposing characters, 26

text blocks
filtering through Unix commands, 100
moving by patterns, 82
range of lines (ex), 58, 62
saving parts of files, 64
sorting (example), 118

text blocks, moving by, 17, 38
text editors, 3
textwidth option, 286
thesaurus option, 263
tilde (~)

:~ (substitute using last search pattern)
command (ex), 80

along left screen margin, 7
case conversion command, 23
folding, 247
as last replacement text, 76
metacharacter, 79, 170

tl (taglength) option
elvis editor, 330
Solaris vi, 132

/tmp (special filename, nvi), 315
:toggle-buffer-list command (vile), 349
toggle options (ex), setting, 96
TOhtml command, 294
toolbar option, 238
toolbar, elvis, 325
toolbars, 233
tools, programming, 239–284

:topleft command, 179
transitions (state) for Vim, 149
transparent edition, 149
transposing characters, 26
transposing words, 27
transposing words (example), 105, 107
troff

alphabetizing glossary (example), 118
converting glossary to (example), 106
formatting package, 4
put emboldening codes around words, 108

troubleshooting
deleting text, 25

:tselect command, 190
type-over (see c command)

U
u (undo) command, 25, 29

buffer recovery, 51
U (undo) command, 25, 29
-U gvimrc option, 238
\u metacharacter, 79–80
\U metacharacter, 79
-u option, 379
u status flag, 187
underscore (_), using in file names, 7
undoing, 29

infinitely (vi clones), 136
elvis editor, 331
nvi editor, 314
vile editor, 361

recovering deletions, 25, 51
text deletions, 25

undolevels option, 296
elvis editor, 331

undolimit option (vile), 361
undos, 296
:unhide command, 189
Unix

commands, 99
Vim, installing, 152

unix parameter (sessionoptions option), 300
“Unknown terminal type” message, 8
unm command, 408
uppercase, converting to lowercase, 23, 79
/usr/tmp directory, 11

Index | 467

www.it-ebooks.info

http://www.it-ebooks.info/


V
-v option, 379

vile editor, 344
-V option, 380
-V option (elvis), 318
v, V commands (elvis block mode), 332
v: Vim variable, 198
v:fname_in variable, 295
v:fname_new variable, 296
v:fname_out variable, 296
/var/tmp directory, 11
variable display mode (elvis), 334
variables, 197–199

buffer, 208
global, using Vim scripts, 203
types, 215
Vim, 199

--version option, 379
versions of vi (see clones, vi)
vertical bar (|)

alternation metacharacter, 128, 311
\| metacharacter, 169, 328, 357
for combining ex commands, 62
cursor movement command, 38
manual folding and, 246

vertically splitting windows, 176
:vi command, 57, 380
vi command (Unix)

command-line options, 48
editing multiple files, 66

vi commands, 13
bottom-line, 5
general form of, 21
numeric arguments for, 16, 31
repeating (see repeating commands)
running when starting vi, 48
undoing (see undoing)

“vi Powered” logo, 436
vi text editor

clones of (see clones, vi)
customizing editing environment, 95
Emacs editor versus, 443
filtering text with, 101
Internet and, 435
quotes about, 445
starting (see invoking vi)

vi.exrc file (nvi), 309
view command (Unix), 49
:view-file command (vile), 349

view mode, 8
vile (vi clone), 50, 343–374

documentation and online help, 345
editing model, 368
extended regular expressions, 357–358
feature summary, 140
important command-line arguments, 344–

345
improvements over vi, 359–365
infinite undo facility, 136
initialization of, 346
interesting features, 368–374
line length, 136
mode indicators, 138
multiwindow editing, 347
obtaining source code, 374
procedure language for, 372
programming assistance, 365–368
set command options (list), 425
sideways scrolling, 137
tag stacks, 360
word abbreviations, 104

VILEINIT environment variable (vile), 346
.vilemenu file, 346, 355
VILE_HELP_FILE environment variable (vile),

346
VILE_STARTUP_FILE environment variable

(vile), 346
VILE_STARTUP_PATH environment variable

(vile), 346
Vim, 145–158

extended regular expressions, 169–171
feature summary, 140
infinite undo facility, 136
line length, 135
mode indicators, 138
multiple windows in, 173–193
set command options (list), 421
sideways scrolling, 137
word abbreviations, 104

vimdiff command, 250, 294
viminfo option, 297
.vimrc startup file, 220
VimResized command, 206
visual (block) mode, 137

elvis editor, 332
vile editor, 364

visual match facility (vile), 363
visual mode, 222

468 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


problems getting to, 433
“Visual needs addressable cursor or upline

capability” message, 8
Visual Studio, 239
:viusage command (nvi), 309
:vnew command, 178
:vsplit command, 176, 178

W
w (move word) command, 17
W (move word) command, 17
:w (write) command, 67
:w (write) command (ex), 10, 63

renaming buffer, 64
saving parts of files, 64
:w! command, 64

^W command
cursors, moving around in windows and,

180
^W key sequence, 176
-w option, 380

nvi editor, 308
-W option, 380
\w, \W metacharacters, 358
^W- command, 186
w: Vim variable, 198
^W< command, 186
^W= command, 186
^W> command, 186
^Wc command, 192
web sites for vi, 435
^Wf command, 190
^Wg] command, 190
^Wg^J command, 190
^WH command, 182
whitespace

deleting words and, 24
indentation, 120
newline characters, 16, 136
sentence delimiters, 39
spaces in filenames, 7, 56

windo command, 188
:window (:wi) command (elvis), 321
Window menus, 223
window option, 96
windows, 177

(see also multiwindow editing)
closing and quitting, 192
cursors, moving around in, 180

moving around, 181–183
opening, 177–180
resizing, 183–186
tag commands, 190

Windows (Microsoft) (see MS Windows)
Windows files, editing with vile, 373
WinEnter command, 206
winheight option, 175, 185
WinLeave autocommand, 178
WinLeave command, 206
winminheight option, 186
winminwidth option, 186
winpos parameter (sessionoptions option),

300
winsize parameter (sessionoptions option),

300
winvile editor, 355–356
winwidth option, 175, 185
^WJ command, 182, 190
^WK command, 182
^WL command, 182
wm (wrapmargin) option, 16, 99

disabling for long insertions, 109
repeating long insertions, 29

word abbreviations, 103
word completion, 259–268
words, 33

(see also characters; lines; text)
deleting by, 23

undoing deletions, 25
deleting parentheses around (example),

108
moving by, 17, 38
replacing (changing), 20–21
searching for general class of, 82
to start/end of (see characters)
transposing, 27, 105, 107
troff emboldening codes around, 108

:wq command, 10
^Wq command, 192
:wquit command (elvis), 322
^Wr command, 183
^WR command, 183
wrap option, 300

elvis editor, 137
wrapmargin (wm) option, 16, 99, 286

disabling for long insertions, 109
repeating long insertions, 29

wrapping searches, 40, 41

Index | 469

www.it-ebooks.info

http://www.it-ebooks.info/


wrapscan option, 41, 49, 99
write-hook option (vile), 373
write permission, 8, 10
writebackup option, 292
writing the buffer

autowrite and autosave options, 50
overriding read-only mode, 49

“writing the buffer”, saving edits and, 6
^Ws command, 178
^WS command, 178
^WT command, 182
^Wx command, 183
^W^F command, 190
^W^J command, 190
^W^Q command, 192
^W^R command, 183
^W^S command, 178
^W^X command, 183
^W^_ command, 186
^W_ command, 186
^W| command, 186

X
x (delete character) command, 25, 388

xp command, 26
X (delete character) command, 25, 388
:x (write and quit) command (ex), 63, 380
-x option, 380
X resources for elvis, 327
X Window System, 3

using gvim, 219, 237
X11 interface

elvis, 319, 323, 326
vile, 349

XEmacs text editor, 3
xscrollbar option (elvis), 327
xvile editor, 349–355
XVILE_MENU environment variable (vile),

346

Y
Y (yank line) command, 27, 388
y (yank) command, 18, 27

examples of use, 32, 47
with named buffers, 28, 51, 68
numbered buffers for, 26, 51
yy command, 27

y (yank) command (ex), 69

-y option, 380
y$ command, 388
yanking text, 18

named buffers for, 28, 51, 68
numbered buffers for, 26, 51

ye command, 388
yw command, 388
yy command, 388

Z
z command, 36
-Z option, 380
zA fold command, 242
za fold command, 242
zC fold command, 242
zc fold command, 242, 247, 248
zD fold command, 242, 249
zd fold command, 242
zE fold command, 242
zf fold command, 242

cursors, creating folds from, 243
zi fold command, 242
Zintz, Walter, 92
zj fold command, 242
zk fold command, 242
zM fold command, 242
zm fold command, 242, 249
zN fold command, 242
zn fold command, 242
zo command, 247
zO fold command, 242
zo fold command, 242
zr fold command, 242, 249
ZZ (quit vi) command, 9
ZZ command, 388

470 | Index

www.it-ebooks.info

http://www.it-ebooks.info/


About the Authors
Arnold Robbins is a professional programmer and technical author who’s been work-
ing with various Unix systems since 1980, and with GNU/Linux systems since 1996.
As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard
for awk. He is currently the maintainer of gawk and its documentation. A software
engineer at Intel, Arnold is the author and/or coauthor of several bestselling titles from
O’Reilly, including Unix in a Nutshell, Effective awk Programming, sed & awk, Learning
the Korn Shell, and Classic Shell Scripting.

Elbert Hannah is a professional software engineer and software architect recently fin-
ishing a 21-year career in the telcom industry. He wrote a full screen editor in assembler
in 1983 as his first professional assignment, and has had special interest in editors since.
He loves connecting Unix to anything and once wrote a stream editor program to au-
tomate JCL edits for mainframe monthly configurations by streaming mainframe JCL
to a stream editor on an RJE-connected Unix box.

Linda Lamb is a former employee of O’Reilly Media, Inc., where she worked in various
capacities, including technical writer, editor of technical books, and marketing man-
ager. She also worked on O’Reilly’s series of consumer health books, Patient Centered
Guides.

Colophon
The animal on the cover of Learning the vi and Vim Editors, Seventh Edition, is a tarsier,
a nocturnal mammal related to the lemur. Its generic name, Tarsius, is derived from
the animal’s very long ankle bone, the tarsus. The tarsier is a native of the East Indies
jungles from Sumatra to the Philippines and Sulawesi, where it lives in the trees, leaping
from branch to branch with extreme agility and speed.

A small animal, the tarsier’s body is only 6 inches long, followed by a 10-inch tufted
tail. It is covered in soft, brown or gray silky fur, and has a round face and huge eyes.
Its arms and legs are long and slender, as are its digits, which are tipped with rounded,
fleshy pads to improve its grip on trees. Tarsiers are active only at night, hiding during
the day in tangles of vines or in the tops of tall trees. They subsist mainly on insects
and, though very curious animals, tend to be loners.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe’s ITC Garamond. The text font is Linotype Birka, the heading
font is Adobe Myriad Condensed, and the code font is LucasFont’s
TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/

	Learning the vi and Vim Editors
	Table of Contents
	Preface
	Scope of This Book
	How the Material Is Presented
	Discussion of vi Commands
	Conventions
	Keystrokes
	Problem Checklist

	What You Need to Know Before Starting
	Comments and Questions
	Safari® Books Online
	About the Previous Editions
	Preface to the Seventh Edition
	What’s New
	Versions
	Acknowledgments from the Sixth Edition
	Acknowledgments for the Seventh Edition


	Part I. Basic and Advanced vi
	Chapter 1. The vi Text Editor
	A Brief Historical Perspective
	Opening and Closing Files
	Opening a File
	Problems Opening Files
	Modus Operandi
	Saving and Quitting a File

	Quitting Without Saving Edits
	Problems Saving Files
	Exercises


	Chapter 2. Simple Editing
	vi Commands
	Moving the Cursor
	Single Movements
	Numeric Arguments
	Movement Within a Line
	Movement by Text Blocks

	Simple Edits
	Inserting New Text
	Appending Text
	Changing Text
	Words
	Lines
	Characters
	Substituting text

	Changing Case
	Deleting Text
	Words
	Lines
	Characters
	Problems with deletions

	Moving Text
	Transposing two letters

	Copying Text
	Repeating or Undoing Your Last Command
	Repeat
	Undo


	More Ways to Insert Text
	Numeric Arguments for Insert Commands

	Joining Two Lines with J
	Problem Checklist

	Review of Basic vi Commands

	Chapter 3. Moving Around in a Hurry
	Movement by Screens
	Scrolling the Screen
	Repositioning the Screen with z
	Redrawing the Screen
	Movement Within a Screen
	Movement by Line
	Movement on the current line


	Movement by Text Blocks
	Movement by Searches
	Repeating Searches
	Changing through searching

	Current Line Searches

	Movement by Line Number
	The G (Go To) Command

	Review of vi Motion Commands

	Chapter 4. Beyond the Basics
	More Command Combinations
	Options When Starting vi
	Advancing to a Specific Place
	Read-Only Mode
	Recovering a Buffer

	Making Use of Buffers
	Recovering Deletions
	Yanking to Named Buffers

	Marking Your Place
	Other Advanced Edits
	Review of vi Buffer and Marking Commands

	Chapter 5. Introducing the ex Editor
	ex Commands
	Exercise: The ex Editor
	Problem Checklist

	Editing with ex
	Line Addresses
	Defining a Range of Lines
	Line Addressing Symbols
	Search Patterns
	Redefining the Current Line Position
	Global Searches
	Combining ex Commands

	Saving and Exiting Files
	Renaming the Buffer
	Saving Part of a File
	Appending to a Saved File

	Copying a File into Another File
	Editing Multiple Files
	Invoking vi on Multiple Files
	Using the Argument List
	Calling in New Files
	Switching Files from vi
	Edits Between Files


	Chapter 6. Global Replacement
	Confirming Substitutions
	Context-Sensitive Replacement
	Pattern-Matching Rules
	Metacharacters Used in Search Patterns
	POSIX Bracket Expressions
	Metacharacters Used in Replacement Strings
	More Substitution Tricks

	Pattern-Matching Examples
	Search for General Class of Words
	Block Move by Patterns
	More Examples

	A Final Look at Pattern Matching
	Deleting an Unknown Block of Text
	Switching Items in a Textual Database
	Using :g to Repeat a Command
	Collecting Lines


	Chapter 7. Advanced Editing
	Customizing vi
	The :set Command
	The .exrc File
	Alternate Environments
	Some Useful Options

	Executing Unix Commands
	Filtering Text Through a Command
	Filtering text with ex
	Filtering text with vi


	Saving Commands
	Word Abbreviation
	Using the map Command
	Protecting Keys from Interpretation by ex
	A Complex Mapping Example
	More Examples of Mapping Keys
	Mapping Keys for Insert Mode
	Mapping Function Keys
	Mapping Other Special Keys
	Mapping Multiple Input Keys
	@-Functions
	Executing Buffers from ex

	Using ex Scripts
	Looping in a Shell Script
	Here Documents
	Sorting Text Blocks: A Sample ex Script
	Comments in ex Scripts
	Beyond ex

	Editing Program Source Code
	Indentation Control
	A Special Search Command
	Using Tags


	Chapter 8. Introduction to the vi Clones
	And These Are My Brothers, Darrell, Darrell, and Darrell
	Multiwindow Editing
	GUI Interfaces
	Extended Regular Expressions
	Enhanced Tags
	Exuberant ctags
	The New tags Format
	Tag Stacks
	Solaris vi
	Exuberant ctags and Vim


	Improved Facilities
	Command-Line History and Completion
	Arbitrary Length Lines and Binary Data
	Infinite Undo
	Incremental Searching
	Left-Right Scrolling
	Visual Mode
	Mode Indicators

	Programming Assistance
	Edit-Compile Speedup
	Syntax Highlighting

	Editor Comparison Summary
	Nothing Like the Original
	A Look Ahead


	Part II. Vim
	Chapter 9. Vim (vi Improved): An Introduction
	Overview
	Author and History**This section is adapted from material supplied by Bram Moolenaar, Vim’s author. We thank him.
	Why Vim?
	Compare and Contrast with vi
	Categories of Features
	Philosophy

	Where to Get Vim
	Getting Vim for Unix and GNU/Linux
	Getting Vim for Windows Environments
	Getting Vim for the Macintosh Environment
	Other Operating Systems
	Aids and Easy Modes for New Users
	Summary

	Chapter 10. Major Vim Improvements over vi
	Built-in Help
	Startup and Initialization Options
	Command-Line Options
	Behaviors Associated to Command Name
	System and User Configuration Files
	Environment Variables
	How to set environment variables
	Environment variables relevant to Vim


	New Motion Commands
	Visual Mode Motion

	Extended Regular Expressions
	Customizing the Executable

	Chapter 11. Multiple Windows in Vim
	Initiating Multiwindow Editing
	Multiwindow Initiation from the Command Line (Shell)
	Multiwindow Editing Inside Vim

	Opening Windows
	New Windows
	Options During Splits
	Conditional Split Commands
	Window Command Summary

	Moving Around Windows (Getting Your Cursor from Here to There)
	Moving Windows Around
	Moving Windows (Rotate or Exchange)
	Moving Windows and Changing Their Layout
	Window Move Commands: Synopsis

	Resizing Windows
	Window Resize Commands
	Window Sizing Options
	Resizing Command Synopsis

	Buffers and Their Interaction with Windows
	Vim’s Special Buffers
	Hidden Buffers
	Buffer Commands
	Buffer Command Synopsis

	Playing Tag with Windows
	Tabbed Editing
	Closing and Quitting Windows
	Summary

	Chapter 12. Vim Scripts
	What’s Your Favorite Color (Scheme)?
	Conditional Execution
	Using the strftime() function

	Variables
	The execute Command
	Defining Functions
	A Nice Vim Piggybacking Trick
	Tuning a Vim Script with Global Variables
	Arrays

	Dynamic File Type Configuration Through Scripting
	Autocommands
	Checking Options
	Buffer Variables
	The exists() Function
	Autocommands and Groups
	Deleting Autocommands

	Some Additional Thoughts About Vim Scripting
	A Useful Vim Script Example
	More About Variables
	Expressions
	Extensions
	A Few More Comments About autocmd
	Internal Functions

	Resources

	Chapter 13. Graphical Vim (gvim)
	General Introduction to gvim
	Starting gvim
	Using the Mouse
	Useful Menus
	gvim’s Window menu
	gvim’s right-click pop-up menu


	Customizing Scrollbars, Menus, and Toolbars
	Scrollbars
	Menus
	Basic menu customization
	More menu customization
	Putting it all together

	Toolbars
	Tooltips

	gvim in Microsoft Windows
	gvim in the X Window System
	GUI Options and Command Synopsis

	Chapter 14. Vim Enhancements for Programmers
	Folding and Outlining (Outline Mode)
	The Fold Commands
	Manual Folding
	Outlining
	A Few Words About the Other Fold Methods

	Auto and Smart Indenting
	Vim autoindent Extensions to vi’s autoindent
	smartindent
	cindent
	The cinkeys option
	The cinwords option
	The cinoptions option

	indentexpr
	A Final Word on Indentation

	Keyword and Dictionary Word Completion
	Insertion Completion Commands
	Completing whole lines
	Completion by keyword in file
	Completion by dictionary
	Completion by thesaurus
	Completion by keyword in current file and included files
	Completion by tag
	Completion by filename
	Completion by macro and definition names
	Completion method with Vim commands
	Completion by user functions
	Completion by omni function
	Completion for spelling correction
	Completion with the complete option

	Some Final Comments on Vim Autocompletion

	Tag Stacking
	Syntax Highlighting
	Getting Started
	Customization
	Syntax groups
	The colorscheme command
	Setting the background option
	The highlight command
	Overriding syntax files

	Rolling Your Own

	Compiling and Checking Errors with Vim
	More Uses for the Quickfix List Window

	Some Final Thoughts on Vim for Writing Programs

	Chapter 15. Other Cool Stuff in Vim
	Editing Binary Files
	Digraphs: Non-ASCII Characters
	Editing Files in Other Places
	Navigating and Changing Directories
	Backups with Vim
	HTML Your Text
	What’s the Difference?
	Undoing Undos
	Now, Where Was I?
	The viminfo Option
	The mksession Command

	What’s My Line (Size)?
	Abbreviations of Vim Commands and Options
	A Few Quickies (Not Necessarily Vim-Specific)
	More Resources


	Part III. Other vi Clones
	Chapter 16. nvi: New vi
	Author and History
	Important Command-Line Arguments
	Online Help and Other Documentation
	Initialization
	Multiwindow Editing
	GUI Interfaces
	Extended Regular Expressions
	Improvements for Editing
	Command-Line History and Completion
	Tag Stacks
	Infinite Undo
	Arbitrary Length Lines and Binary Data
	Incremental Searching
	Left-Right Scrolling

	Programming Assistance
	Interesting Features
	Sources and Supported Operating Systems

	Chapter 17. Elvis
	Author and History
	Important Command-Line Arguments
	Online Help and Other Documentation
	Initialization
	The Session File
	Initialization Steps

	Multiwindow Editing
	GUI Interfaces
	The Basic Window
	Mouse Behavior
	The Toolbar
	Options

	Extended Regular Expressions
	Improved Editing Facilities
	Command-Line History and Completion
	Tag Stacks
	Infinite Undo
	Arbitrary Length Lines and Binary Data
	Left-Right Scrolling
	Visual Mode

	Programming Assistance
	Edit-Compile Speedup
	Syntax Highlighting

	Interesting Features
	Display Modes
	Pre- and Post-Operation Control Files

	elvis Futures
	Sources and Supported Operating Systems

	Chapter 18. vile: vi Like Emacs
	Authors and History
	Important Command-Line Arguments
	Online Help and Other Documentation
	Initialization
	Multiwindow Editing
	GUI Interfaces
	Building xvile
	xvile Basic Appearance and Functionality
	Scrollbars
	Setting the cursor position and mouse motions
	Selections
	Clipboard
	Resources
	Adding menus

	Building winvile
	winvile Basic Appearance and Functionality

	Extended Regular Expressions
	Improved Editing Facilities
	Command-Line History and Completion
	Tag Stacks
	Infinite Undo
	Arbitrary Length Lines and Binary Data
	Locale support
	File formats

	Incremental Searching
	Left-Right Scrolling
	Visual Mode

	Programming Assistance
	Edit-Compile Speedup
	Syntax Highlighting

	Interesting Features
	The vile Editing Model
	Major Modes
	The Procedure Language
	Miscellaneous Small Features

	Sources and Supported Operating Systems


	Part IV. Appendixes
	Appendix A. The vi, ex, and Vim Editors
	Command-Line Syntax
	Command-Line Options

	Review of vi Operations
	Command Mode
	Insert Mode
	Syntax of vi Commands
	Examples
	Visual mode (Vim only)

	Status-Line Commands

	vi Commands
	Movement Commands
	Character
	Text
	Lines
	Screens
	Searches
	Line numbering
	Marks

	Insert Commands
	Edit Commands
	Changing and deleting text
	Copying and moving

	Saving and Exiting
	Accessing Multiple Files
	Window Commands (Vim)
	Interacting with the System
	Macros
	Miscellaneous Commands

	vi Configuration
	The :set Command
	Example .exrc File

	ex Basics
	Syntax of ex Commands
	Addresses
	Address Symbols
	Options

	Alphabetical Summary of ex Commands

	Appendix B. Setting Options
	Solaris vi Options
	nvi 1.79 Options
	elvis 2.2 Options
	Vim 7.1 Options
	vile 9.6 Options

	Appendix C. Problem Checklists
	Problems Opening Files
	Problems Saving Files
	Problems Getting to Visual Mode
	Problems with vi Commands
	Problems with Deletions

	Appendix D. vi and the Internet
	Where to Start
	vi Web Sites
	The vi Lover’s Home Page
	The Vi Pages
	vi Powered!
	vi for Java Lovers
	Online vi Tutorial

	A Different vi Clone
	Amaze Your Friends!
	Tastes Great, Less Filling
	vi Quotes


	Index



